

Hospital-Driven Antimicrobial Resistance: A Comprehensive Evidence-Based Synthesis Of Drivers, Transmission, And Control Strategies

Birupaksha Biswas^{1*}, Dr. Damini Joshi², Dr. Twinkle Bharatbhai Patel³, Dr. Angel Saluja⁴, Dr Vaishnavi Raundal⁵, Shalom Shungu Chakaringa⁶

¹*Public health Scholar, Parul institute of Public Health (PIPH), Parul University, Vadodara, Gujarat, India. Mail: 2419381010004@paruluniversity.ac.in, ORCID: 0009-0008-6782-1790

²Assistant professor, Parul Institute of public Health (PIPH), Parul University, Vadodara, India. damini.joshi19835@paruluniversity.ac.in

³Public Health Scholar, Parul institute of Public Health (PIPH) Mail: twinkle15131@gmail.com

⁴Public health Scholar, Parul institute of Public Health (PIPH), Parul University, Vadodara, Gujarat, India. Mail: angelsaluja8@gmail.com

⁵Health Specialist, Parul institute of Public Health (PIPH), Parul University, Vadodara, Gujarat, India. Mail: vaishnaviraundal29@gmail.com

⁶Public health Scholar, Parul Institute of Public Health (PIPH)
Email: shalomchakaringa7@gmail.com

***Corresponding Author:** Birupaksha Biswas

*Public health Scholar, Parul institute of Public Health (PIPH), Parul University, Vadodara, Gujarat, India. Mail: 2419381010004@paruluniversity.ac.in, ORCID: 0009-0008-6782-1790

Abstract

Antimicrobial resistance (AMR) is one of the most important global public health concerns of the twenty-first century, and hospital settings play a critical role in the emergence, amplification, and dissemination of drug-resistant illnesses. Healthcare facilities offer the ideal conditions for the selection and spread of resistance due to the concentration of vulnerable patient groups, widespread use of antibiotics, invasive procedures, and complex care pathways. This study evaluates the effectiveness of hospital-based management strategies and offers a comprehensive, evidence-based summary of the ways in which hospitals fuel antibiotic resistance. A PRISMA-informed evidence synthesis assisted by Litmaps citation-network analysis was used to locate and examine recent and significant literature from Scopus, Web of Science, PubMed, and Crossref-indexed sources. Twenty-five papers that met the inclusion criteria were subjected to a qualitative synthesis. The primary hospital-specific drivers of resistance found in the analysis include inappropriate antimicrobial prescribing, selective pressure from broad-spectrum agents, inadequate infection prevention and control (IPC) practices, environmental contamination, and healthcare-associated transmission through patients, healthcare personnel, and shared equipment. High-priority pathogens like methicillin-resistant *Staphylococcus aureus*, vancomycin-resistant *Enterococcus*, multidrug-resistant Gram-negative bacteria, and *Clostridium difficile* are highlighted because of their disproportionate role in healthcare-associated infections, prolonged hospital stays, increased healthcare costs, and mortality. Numerous studies show that antimicrobial stewardship programs are the most effective hospital-based approach for reducing antibiotic use and resistance rates. Although IPC bundles,

CC License CC-BY-NC-SA 4.0	<p>surveillance systems, rapid diagnosis, and environmental cleaning all cooperate to limit transmission pathways, their results vary based on the resources, infrastructure, and adherence of each location. Underappreciated elements that contribute to the persistence of resistance include environmental reservoirs and intra-hospital transmission networks. This synthesis emphasizes that hospital-driven AMR is a systemic problem that cannot be solved by isolated initiatives. Coordinated, context-specific actions combining antimicrobial stewardship, robust IPC, environmental control, and surveillance are essential to reducing the incidence of drug-resistant diseases and preserving the effectiveness of currently available antimicrobials.</p> <p>Keywords: Antimicrobial resistance; Drug-resistant infections; Hospital-acquired infections; Antimicrobial stewardship; Infection prevention and control; Healthcare-associated transmission; Surveillance; Public health</p>
--------------------------------------	---

1. Introduction

Antimicrobial-resistant (AMR) microorganisms are often found in hospitals, where they can live on surfaces, medical equipment, as well as water distribution systems (Davey et al., 2006). Patients in health-system facilities are at increased risk of colonization or infection with drug-resistant organisms (DROs), such as methicillin-resistant *Staphylococcus aureus* (MRSA), vancomycin-resistant *Enterococcus* (VRE), multidrug-resistant Gram-negatives (MDR-GN), and *Clostridioides difficile* (*C. difficile*). These kinds of infections make hospital stays longer, raise expenditures, and cause too many deaths and illnesses (Nelson et al., 2022). Environmental channels and the contaminated hands of healthcare providers are significant elements of transmission networks. Previous studies have shown that hospitals can create or make microbial resistance worse in many ways. Nonetheless, despite this understanding, a comprehensive synthesis and systematic analysis of the specific patterns and mechanisms remain absent from the existing corpus of research. This difference is especially clear when you look at how different patient demographics, varied exposure scenarios, and the hospital atmosphere during the acute phase effect resistance to different illnesses. In light of these considerations, the present evaluation seeks to investigate the dynamics of transmission and other essential elements of microbial resistance within hospital settings (Mody et al., 2019 & Kizny Gordon et al., 2017). The idea is to gain a complete picture of how these critical pieces fit together with patterns of antimicrobial usage and the many diverse factors that go into taking care of patients. This study also finds the kind of diseases, illnesses, and treatments that are most likely to cause resistant microbes to grow in hospitals. It also tries to describe certain things that could help stop the development of resistance, which would enable healthcare settings undertake the best stewardship efforts to get better results in the fight against microbial resistance (Barlam et al., 2016 & Holmes et al., 2016). People all throughout the world agree that finding antibiotics and vaccines are two of the most important things that have happened in clinical medicine. In the 1940s, sulfonamides, penicillin, and streptomycin were first sold. This was the start of the flow of antibacterial medications. Antibiotics have totally changed the future of medicine by curing diseases that used to be lethal (Giamarellou et al., 2023). The antibiotic resistance pattern is frequently utilized as a surrogate for bacterial relatedness, notwithstanding its insufficient sensitivity and specificity. Typing can be used to find out how closely related bacteria are, however traditional methods don't have the selection strength to tell how closely related bacteria are above the level of bacterial clones. In the end, figuring out if there is an outbreak is still primarily a subjective process that relies on the gut feelings of experienced infection control professionals (Peacock et al., 2018). Antimicrobial resistance (AMR) is an increasing threat to the health of people all over the world. More than 14 million people develop enteric fever every year, and more than 135,000 die from it. Antimicrobial treatment is the primary method for illness control; however, antimicrobial resistance (AMR) is increasingly complicating this process. Our goals were to find out how widespread AMR is in *Salmonella enterica* serovars *Typhi* and *Paratyphi A* infections around the world and where it is most common. We wanted to figure out how serious the problem is and make it easier to build geospatial maps of AMR prevalence to help with focused public health action (Browne et al., 2020). The European Centre for Disease Prevention and Control published a research in 2009 that found that strains of antibiotic-resistant bacteria infected over 400,000 individuals in 28 European nations. The most common pathogens were *Escherichia coli* and *Klebsiella pneumoniae*. The percentage of *E. coli* isolates resistant to four classes of antibiotics increased from 0.6% in 2002 to 3.4% in 2009, while the percentage of third-generation cephalosporin-resistant *E. coli* surged from 1.7% in 2002 to 8% in 2009. The growth in *K. pneumoniae* antibiotic resistance is far worse. The

European Centre for Disease Prevention and Control says that *K. pneumoniae*'s resistance to strong, last-resort antibiotics like carbapenems went from less than 1% to more than 25% in the EU in 2009(Tseng et al., 2011). Antimicrobial resistance (AMR) is a big public health problem in the twenty-first century. It makes it harder to stop and cure a lot of diseases caused by bacteria, parasites, viruses, and fungi. The first World Health Organization (WHO) worldwide report on AMR surveillance showed how widespread AMR is over the world. It also pointed out some big problems with the current surveillance system. Drug-resistant diseases caused roughly 4.95 million deaths around the world in 2019. If nothing is done right away, this number might rise to 10 million deaths a year by 2050. Several recent AMR-related outbreaks have shown how serious this problem is. Carbapenem-resistant *Klebsiella pneumoniae* (CRKP) is a serious global health problem, especially in hospitals. It causes severe pneumonia, bloodstream infections, and urinary tract infections, and there aren't many treatment options(Nazir et al., 2025).If not stopped, antimicrobial resistance (AMR) might kill 10 million people per year by 2050, putting both modern medicine and global health at risk. This research looks at global attempts to manage antibiotic resistance and the ecological and molecular reasons behind it in order to come up with feasible ways to lessen the consequences of AMR that are getting worse(Nazir et al., 2025). Nurses and other relevant healthcare workers must be involved in the best possible use of antibiotics in order to combat the global issue of drug-resistant illnesses. Taking into account the many antimicrobial stewardship (AMS) nursing models now used in the UK could help other regions develop practical and contextually suitable nursing role decisions and policies(Castro-Sánchez et al., 2019). AMR threatens clinical management, public health, and international healthcare systems. Drug-resistant diseases are becoming a global issue. They prolong sickness, increase mortality, treatment failures, and costs. This chapter provides a complete picture of drug-resistant diseases by focusing on epidemiological indicators such DALYs, QALYs, mortality estimates, and healthcare system stress. It also discusses how AMR affects regional healthcare systems, diseases, and healthcare systems overall. Recent forecasts suggest that population shifts, antibiotic misuse, and environmental risk factors will contribute to the predicted AMR burden increase. This chapter discusses evidence-based policy changes and stewardship models. Standardized surveillance systems like WHO-GLASS and coordinated clinical tools like SOWs are also mentioned (Murray et al., 2022; Naylor et al., 2018) (Holmes et al., 2016)(WHO-2018). By choosing priority pathogens and using global estimates, this work helps create data-driven strategies that will keep antibiotics working and slow the rise of AMR. The chapter also talks about future projects that will be important for lowering the expected global burden of AMR in the next decades. These projects include the development of new antimicrobials, data-driven surveillance innovation, and One Health integration(Sharma et al., 2025).

Metric Type	Examples	Relevance to AMR Burden Estimation
Epidemiological	DALYs, QALYs, Years of Life Lost (YLL), infection-attributable deaths	Captures overall population-level health impact
Clinical Outcome-Based	Treatment failure rates, infection relapse, mortality, complication rates	Evaluates direct clinical severity and management outcomes
Health System Burden	Length of hospital stay, ICU admissions, readmissions	Reflects resource strain and capacity implications
Economic	Direct medical costs, indirect costs	Measures financial burden at patient, household, and system levels
Surveillance-Driven	Resistance rates by pathogen, regional prevalence, data from GLASS	Supports tracking, comparison, and early warning frameworks

Table-1: Metrics used in estimating the global burden of antimicrobial resistance.

Objective:

To evaluate the efficacy of hospital-based methods for the prevention and control of antimicrobial-resistant infections, as well as to thoroughly synthesize and review the evidence regarding the role that hospital environments play in the emergence, spread, and persistence of these illnesses.

Current global burden of AMR

Recent estimates suggest that the impact of AMR on global morbidity and mortality is on par with or even higher than that of some serious infectious diseases. According to thorough analyses, bacterial AMR was directly responsible for an estimated 1.27 million deaths globally in 2019 and was connected to an additional 4.95 million deaths in which resistance was a contributing factor but not the primary cause of death. These figures show that AMR is a high-burden health issue that has a direct and indirect impact on clinical outcomes(Sharma et al., 2025). Recent surveillance and burden modeling have identified significant bacterial diseases that disproportionately contribute to this global burden. The most important of them are *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Escherichia coli*, and *Klebsiella pneumoniae*. These organisms frequently develop resistance to a range of drugs, including fluoroquinolones, carbapenems, and broad-spectrum beta-lactams (Tacconelli et al., 2018). The preceding table shows expected death rates, significant resistance profiles, regional distribution, model-based QALY loss, and DALYs (when available) for certain illnesses. This illustrates how many different areas they affect. These measures offer a thorough picture of the health burden associated with priority drug-resistant infections and are generated from economic modeling studies and worldwide epidemiological investigations (Table 2).

Pathogen	Estimated deaths per year (attributable to AMR)	DALYs (annual, if available)	QALY Loss/Estimate	Regions most affected	Main drugs resisted
<i>Escherichia coli</i>	~200,000	Data limited	7.7–10.3 per patient (ESBL model)	South Asia, Sub-Saharan Africa	3rd-generation cephalosporins, fluoroquinolones
<i>Klebsiella pneumoniae</i>	~150,000	Partial Estimates	Modeled in population-based QALY simulations	South Asia, Southern Europe	Carbapenems, cephalosporins
<i>Acinetobacter baumannii</i>	~80,000	Limited	Associated with ICU mortality burden	Asia-Pacific, low-resource hospitals	Carbapenems, aminoglycosides
<i>Pseudomonas aeruginosa</i>	~60,000	Not available	Contributes to model-based QALY loss	Healthcare settings globally	Carbapenems, β -lactams, fluoroquinolones
<i>Staphylococcus aureus</i>	~80,000	3.5 million (estimated, 2019)	Used in AMR-QALY modeling in high-income settings	Americas, Middle East, North Africa	Methicillin, macrolides

(Table-2): Major antimicrobial-resistant bacterial diseases' worldwide burden: estimated mortality, DALYs/QALYs, regional impact, and important drug resistance trends

Regional mortality rates:

Sub-Saharan Africa and South Asia have the highest age-standardized mortality rates from resistant illnesses. About 24 deaths per 100,000 people in sub-Saharan Africa and more than 22 deaths per 100,000 people in South Asia in 2019 were directly caused by AMR. While rates were lower in high-income regions such as Western Europe and North America (usually less than 5 per 100,000), multidrug-resistant infections nevertheless lead to substantial hospital costs and healthcare expenditures (Cassini et al., 2019). Geographical variations also exist in pathogen-specific resistance patterns. In portions of Southern Europe and South and Southeast Asia, carbapenem-resistant *K. pneumoniae* is common. While ESBL-producing *E. coli* is now common in both high- and low-income areas, MRSA has historically presented a significant threat in North America. These differences emphasize the necessity of region-specific data to inform burden estimation and intervention strategies(Logan & Weinstein, 2017; Nordmann et al., 2011; Klein et al., 2013; David et al., 2010; Woerther et al., 2013).

2. Conceptual Framework

Like other compounds, antibiotics can be lost or degraded in effluents. Hospitals routinely receive abnormally large amounts of many antibiotics. Emissions from hospital wastewater pose a serious and hazardous risk to the environmental spread of drug-resistant microorganisms. The remaining antibiotics in these effluents may establish new environmental reservoirs, enabling a cycle of resistance that could affect both human and ecological health (Luyt et al., 2014) (H. Karkada et al., 2011).

3. Historical Overview of Drug-Resistant Infections in Hospital Settings

Antimicrobial resistance became a major public health issue in the late 20th century. Epidemiological monitoring of certain diseases in community and clinical settings and drug-resistant organisms were observed. Discovering hospital strains of *Staphylococcus aureus* resistant to β -lactams (penicillin and cephalosporins) led to the development of initial management measures. The first global antibiotic resistance study on commensal bacteria and hospital infections began in 1986. The Oxford English Dictionary included "antimicrobial resistance" in 1983, thirty years after "antimicrobial" was first used (Wang et al., 2018). Hospitals focused on Mult resistant pathogens instead of antibiotic-resistant microorganisms. The World Health Organization has designated five major pathogens—*Mycobacterium tuberculosis*, *Pseudomonas aeruginosa*, *Acinetobacter* spp., *Enterococcus* *fecium*, and *Staphylococcus aureus* as of particular concern due to their alarming antibiotic resistance and rising incidence worldwide. More accurate diagnostic procedures and tests make it easier to promptly identify these organisms, especially those resistant to high-priority antibiotics, which are essential for treating serious infections. Resistance in Gram-positive bacteria like *Mycobacterium tuberculosis* has drawn global attention in recent years. Researchers, legislators, and healthcare authorities must immediately address this grave and growing threat to public health systems worldwide (Davey et al., 2006).

4. Mechanisms Driving Resistance Emergence in Hospitals

Drug resistance in healthcare institutions cannot be explained by one path or condition. Hospitals' effects on resistance dynamics are unknown, which could aid solution development. This conceptual framework and assessment of supporting evidence describes the primary resistance mechanisms. Nursing homes, veterans' hospitals, and ordinary hospitals exist. Antibiotic, antiviral, and antifungal-targeting bacteria, viruses, and fungi are therapeutic. This article covers antibiotic-responsive bacteria (Luyt et al., 2014). AMR occurs when antibiotics selectively push hospital bacteria. Alongside pharmaceutical antimicrobials, environmental pollutants, disinfectants, biocides, and heavy metals exert selective pressure (Thakur et al., 2008). "Antimicrobial stewardship" controls hospital antibiotic prescriptions to avoid selective pressure. antibiotic stewardship decreases facility antibiotic use, reducing resistance. It is unclear how medications and dosing regimens affect selection pressure. Hospital-acquired and transfer-associated infections are serious public health issues. HAIs' direct and indirect economic effects on facilities and society are widely documented. Infection prevention and control may improve resistance patterns, depending on the situation. Transmission dynamics include staff and patient movement, patient colonization and infection risk, and setting-specific pathogen and resistance factors. Healthcare design and operations involve patient flow, treatment, room assignments, cleaning, disinfection, water systems, equipment reuse, and turnaround times.

4.1. Antimicrobial Use and Stewardship

The selection pressure that promotes antimicrobial resistance is directly affected by clinical antibiotic use (Luyt et al., 2014). Most hospitalized patients receive antimicrobials, according to (Davey et al. (2006). Stronger drugs may cause drug-resistant germs to spread. A robust antimicrobial stewardship program reduces selection pressure for non-targeted or resistant organisms and promotes antibiotic use for defined objectives. Following treatment duration, dose, and regimen guidelines is crucial. Diagnostic ambiguity can lead to overprescription of broad-spectrum beta-lactams at high doses. *Pseudomonas aeruginosa*, *Enterobacteriaceae*, and other targets often develop resistance due to these patterns. These organisms' remaining reservoirs must be reduced by better environmental cleaning between patients.

4.2. Infection Prevention and Control Practices

Hospitals have traditionally used infection prevention and control (IPC) to reduce medical care-associated illnesses and patient mortality. They prevent antibiotic-resistant infections from spreading. Numerous epidemiological studies have linked patient and hospital resistance to poor IPC adherence. After improving prevention and control efforts, some institutions and countries have seen a decrease in resistance (Davey et al., 2006). Drug-resistant microbes and the rise of people colonized by them are connected. Nosocomial

transmission patterns from hospital-acquired infections or colonization's show that patient-to-patient transfer is the main source of colonization and that infectious patients are not community members. Fine-scale molecular typing investigations have shown horizontal transmission between patients and employees for numerous diseases (Jaime Henry et al., 1970).

4.3. Healthcare-Associated Transmission Dynamics

Hospital patients' colonization with resistant microbes can propagate antibiotic resistance to other patients. Patients who come into touch with colonized patients, the environment, medical staff, or equipment may get colonized at admission or during their stay. Pathogen resistance, competition with other usual pathogens, and infection prevention and treatment strategies all affect colonization. Despite being developed to better understand healthcare-related infection dynamics, few within-hospital transmission models address antibiotic resistance. Much modeling has been done to study population or community-level illness transmission dynamics. Despite several articles linking resistance to healthcare-related illnesses and death, there are limited quantitative estimates of its impact on transmission dynamics in the healthcare system(H. Karkada et al., 2011).

4.4. Environmental and Operational Factors

Hospital operations and settings spread antibiotic resistance and healthcare-associated disorders despite inconclusive evidence. Hospital facilities and services vary by ward architecture, patient types, staff numbers, operational norms, infection control, and cleaning and disinfection. To focus analysis, these requirements establish suitable settings: Enterobacteriaceae, *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, vancomycin-resistant *Enterococcus*, *Mycobacterium tuberculosis*, and *Clostridium* (1) Acute care; (2) Inpatient; (3) ≥ 48 hours post-hospitalization. Enterobacteriaceae germs are resistant to cephalosporins, carbapenems, and extended-spectrum β -lactamases. Healthcare infrastructure includes aquatic ecosystems and ward transmission links. Antibiotic use, infection prevention, environmental reservoirs, and transmission patterns generate healthcare-related antibiotic resistance and illnesses. Pathogen landscape, clinical practice, antibiotic policy, infection prevention bundle, and population changes affect these drivers. Hospitals cause health-related illnesses and antibiotic resistance. Patient-to-patient transmission and healthcare-related resistance factors spread these diseases (A. Cohen, 2018).

5. Surveillance, Diagnostics, and Data Analytics

Three biological processes drive hospital-based AMR prevalence, transmission, and generation. Antibiotics first produce microorganism resistance (Davies & Davies, 2010). (2) Integrons, transposons, and plasmid exchange can horizontally transfer commensal bacteria or environmental reservoir resistance determinants to pathogenic species (Davies & Davies, 2010; Tacconelli et al.). (3) Patient-derived resistant bacterial cloning promotes hospital AMR. This usually happens with poor infection management (Palmore & Henderson, 2013). These interventions affect hospital AMR. Avoiding antibiotics lowers bacteria resistance (Baur et al., 2017). To prevent resistant illnesses, use active surveillance, patient isolation, and hand hygiene (Palmore & Henderson, 2013; Tacconelli et al., 2018). Hospital sanitation protects MDR (Chemaly et al., 2014; Chia, 2020). Hospitals must monitor AMR's ecological and epidemiological effects (Tacconelli et al., 2018; WHO, 2014). Manage hospital preventative and mitigation therapy to prevent resistant illness (Harbarth et al., 2015). Infection control, environmental cleaning, and antibiotic stewardship are assessed, although pathogen and hospital reservoir resistance trends are restricted. These additional surveillance methods study healthcare AMR. These include: (1) passive notification systems for newly detected resistance events (Tacconelli et al., 2018); (2) regular reporting of resistant pathogens isolated from patients and hospital environments (Chemaly et al., 2014); (3) molecular characterization of resistance genes and genetic determinants conferring fitness advantages, which enhances understanding of transmission pathways and evolutionary dynamics (Davies & Davies, 2010); (4) surveillance of antimicrobial consumption coupled with structured analyses of its association with resistance emergence (Baur et al., 2017); (5) systematic observation of nursing and clinical care routines, particularly adherence to standard operating procedures during intensive care unit patient transfers (Harbarth et al., 2015); (6) follow-up of environmental decontamination campaigns through targeted monitoring of high-risk reservoirs (Chemaly et al., 2014; Chia et al., 2020); and (7) laboratory-based bio surveillance of periodically deployed biocontrol or disinfection products to assess their impact on resistant microbial populations (Dancer, 2014).

6. Hospital-Based Interventions and Their Effectiveness

The effectiveness of hospital-based initiatives aimed at lowering antibiotic resistance is only partially documented. The evidence for antimicrobial stewardship programs is strong and consistent, but the impacts of infection prevention and environmental decontamination interventions are less clear (Baur et al., 2017; Davey et al., 2017). Similarly, the effects of cohousing, point-of-care testing, rapid diagnosis, and patient isolation on resistance dynamics remain unclear (Dancer, 2014; Chemaly et al., 2014). These constraints make it more challenging to assess optimization prospects in specific hospital settings or in current approaches that have high collateral resistance costs (Harbarth et al., 2015; Tacconelli et al., 2018) (Holmes et al., 2016).

6.1. Antibiotic Stewardship Programs

Hospital antibiotic use greatly affects gram-positive and gram-negative bacteria resistance. Therefore, "antimicrobial stewardship" educating personnel on how to properly administer these drugs could help stop hospital resistance. These efforts usually focus on broad-spectrum antibiotics, which are given regardless of the ailment and are most associated to multidrug resistance and major health issues. The 2015 Global Action Plan on Antimicrobial Resistance emphasizes hospital antibiotic management. It deems it a "critical element" of national antimicrobial resistance measures (World Health Organization, 2015).

6.2. Infection Prevention and Control Bundles

Infection prevention and control bundles are crucial. AICH, ASSIST4SAFE, COMMIT, DRIP, HAI-PRO, SCIPC1, and IPC CARE are hospital drug-resistant infection prevention organizations. The WHO, Joint Commission, Safe Injection Practices Coalition5, and CDC issued four well-known guidelines for preventing healthcare-acquired infections before voluntary guidelines were established to stop drug-resistant pathogens from spreading from societal reservoirs. When enough knowledge was public, attempts to codify bundles resulted to infection prevention and control bundles (Yakob et al., 2014). Epidemiologic concerns and local transmission dynamics have led several hospitals worldwide to bundle recruit.

6.3. Environmental Cleaning and Disinfection

The environment must be cleaned to prevent hospital infections. Despite growing hygiene awareness, many hospitals still risk healthcare-associated illnesses. Workflow issues make it hard to clean and disinfect high-touch surfaces to prevent disease spread. Microbes resistant to various medications can infect others. Environmental contamination transmits germs, especially drug-resistant ones, beyond droplet, contact, and airborne precautions. Environmental cleanliness reduces methicillin-resistant *Staphylococcus aureus*, *Clostridium difficile*, *Acinetobacter* species, vancomycin-resistant *Enterococcus*, and other germs (A. Reynolds et al., 2021). Multidrug-resistant organisms persist in hospitals despite cleaning advancements, increasing the risk of transmission to patients and staff. Pneumatic tubes, nurse-call buttons, and shared laptops are often contaminated (Apisarathanarak & J. Weber, 2018). Multidrug-resistant bacteria menace hospitals worldwide. Effective cleaning and disinfection and routine monitoring reduce surface environment, inanimate object, and high-touch surface contamination.

6.4. Rapid Diagnostics and Point-of-Care Testing

Advancements in clinical microbiology are transforming rapid diagnostics for different infectious diseases and monitoring of pathogens to guide antimicrobial therapy. New testing technologies show promise to impact disease management and control antimicrobial resistance. Rapid diagnostics may limit the time between sample collection and definitive diagnosis, thus directing appropriate therapy sooner after presentation. However, diagnostic tests, especially for antimicrobial resistance, need to be aligned with clinical workflows and procedures. Assessment of strategic timing and optimal integration of diagnostics with existing clinical practices may improve therapy processes and control of overall antimicrobial consumption (Bassetti et al., 2022);(P. Hays et al., 2019).

6.5. Patient Isolation and Cohorting

Following pathogen acquisition, factors that enable successful expression and amplification in the host are paramount (Marit Andersen, 2018). Hospital environments support pathogen establishment through biophysical, physiological, and chemical compatibility with host cells and tissue. Infections in hospitals also evolve under selective pressures. Selection arises from antimicrobial use in treatment, post-surgical prophylaxis, and colonization clearance; from concurrent clostridial infection therapy; and from sterilization and cleaning products that encourage resurgent organisms (Ghosh et al., 2018; Meijer et al., 2019). Transfer of genetically similar strains is central to resistance dissemination and resistant clones can dominate species

populations after introduction (Andersson et al., 2022). Reduction of access to traditional antimicrobials extends survival time and increases the likelihood of acquisition of alternative resistance mechanisms (Fluit, 2018). Pathogen-genome analyses reveal that transfers among patients and relatives along with transmission via healthcare staff and contaminated environments create well-established networks in hospitals (Bonnin et al., 2018; Hurlimann et al., 2020).

7. Regional and Global Implications: Mobility, Transfer of Patients, and Networks

Numerous nations and regions are impacted by the spread of AMR infections. On the basis of patient arrivals and departures, international health services—such as patient migrations, appointments in nearby nations, ambulance inter-facility transfers, and seasonal visits—emphasize this significance (H. Karkada et al., 2011). A worldwide approach might not be effective for all circumstances and outbreaks, however several national and international programs seek to stop the spread of AMR infections. Antimicrobial resistant (AMR) microorganisms are those that have the potential to withstand antimicrobial agents. AMR is a leading source of morbidity and mortality globally and a significant barrier to the treatment of infectious diseases. MRSA, VRE, CR-Enterobacteriaceae, and *P. aeruginosa* can be acquired by hospitalized patients, which reduces the effectiveness of treatment, lengthens hospital stays, and raises mortality. The ability of a microorganism to resist drugs that kill or inhibit its growth is known as antimicrobial resistance (AMR). AMR refers to a microorganism's resistance to the actions of an antimicrobial agent. Multidrug-resistant organisms (MDRO) such as MRSA, VRE, CR-Enterobacteriaceae, and *P. aeruginosa* are a concern for medical facilities because they reduce treatment options, lengthen hospital stays, and raise mortality rates.

8. Economic and Policy Dimensions

Hospitals and health systems worldwide suffer antibiotic resistance. Drugs, therapies, medical histories, and hospitals can cause infections. Drug-resistant infections aggravate it. Hospital difficulties hinder antibiotic resistance management. Resistant germs proliferate in hospitals (Stalteri Mastrangelo et al., 2022). Policy impacts antibiotic use, thus the link is crucial. Hospital antibiotic resistance is complex and involves multiple measures. OECD hospitals' antibiotic use and resistance are affected by macro, meso, and micro variables. Finances and national policies affect antibiotic use, research, and supply. At the meso level, hospital characteristics, organizational variables, and policies affect antibiotic supply, clinical recommendations, and infection control (Luyt et al., 2014). Rapid diagnoses make transfers and treatment interruptions easier for hospitals. Microscopically, professional norms, social networks, and prescribing behavior rule, while monitoring tools provide prescription pattern feedback. All levels offer financial incentives. Hospitals and units need funds for main antibiotics. Disinfectant costs, research incentives, and stewardship program funding depend on the national market. Hospital antibiotic use is governed by national guidelines, academic research, and therapeutically relevant older medicines (Jansen et al., 2006). Addressing antimicrobial resistance requires economic and equity considerations.

9. Methodological Considerations in Evidence Synthesis

Methodology:

Study Design:

This study employed a comprehensive evidence-based review using citation network analysis to examine the role of hospitals in the development and spread of drug-resistant infections. A Litmaps-assisted systematic mapping approach was applied to identify, track, and analyze influential and recent literature, ensuring both historical depth and contemporary relevance.

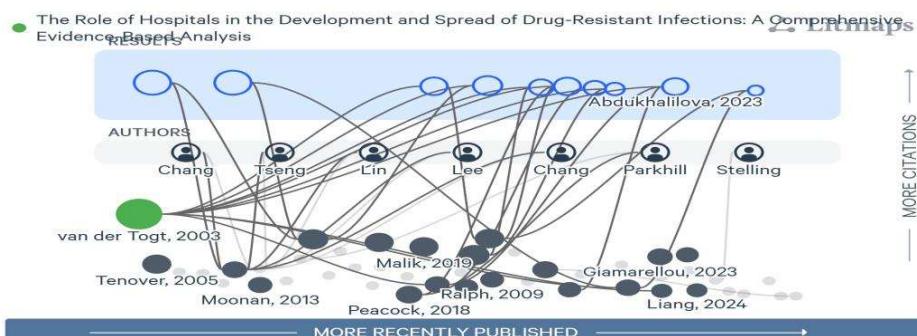
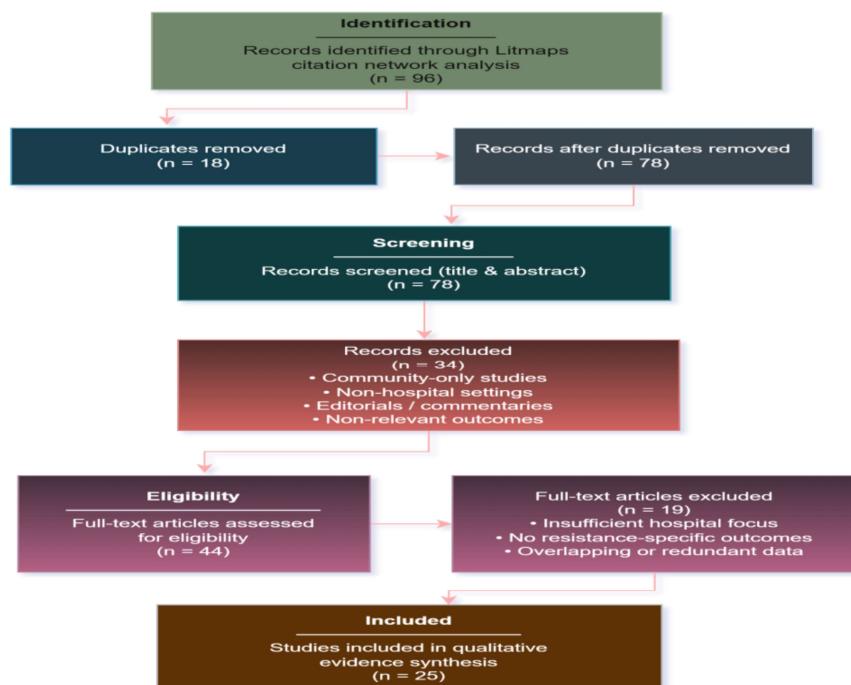


Figure-1: Data source from different articles


Data Source and Search Strategy

The literature search and mapping were conducted using Litmaps (Litmaps Ltd.), a bibliometric discovery and citation-tracking platform that integrates data from Scopus, Web of Science, Crossref, and PubMed-indexed sources. An initial seed article was selected based on its high citation impact and relevance to hospital-associated antimicrobial resistance: (*van der Togt et al., 2003*). This article served as the anchor paper for the Litmaps exploration.

Litmaps Evidence Mapping Procedure

The Litmaps analysis was conducted in a **stepwise and reproducible manner**:

PRISMA-Style Flow Diagram:

Figure-2: PRISMA-style flow diagram of study selection using Litmaps-based evidence mapping

This study employed a comprehensive evidence-based analysis to systematically examine the role of hospitals in the development and spread of drug-resistant infections. A PRISMA-informed study selection framework, supported by Litmaps citation network analysis, was applied to ensure transparency, methodological rigor, and reproducibility.

Identification of Studies:

The literature identification process was initiated using Litmaps, a citation-mapping platform that integrates data from major bibliographic databases, including Scopus, Web of Science, PubMed, and Crossref. A highly cited and conceptually foundational article related to hospital-associated antimicrobial resistance was used as the seed paper. Through automated forward citation tracking, backward reference exploration, and thematic clustering, Litmaps generated a citation network capturing both foundational and recent studies relevant to the research question. A total of 96 records were identified through this citation network analysis.

Duplicate Removal:

All identified records were screened for duplication using Litmaps' automated tools, followed by manual verification to ensure accuracy. This process resulted in the removal of **18 duplicate records**, leaving **78 unique records** for subsequent screening.

Screening:

The **78 unique records** underwent title and abstract screening to assess relevance to hospital-based antimicrobial resistance. Screening criteria focused on studies addressing: Hospital or healthcare facility settings, Drug-resistant or antimicrobial-resistant infections & Human health outcomes

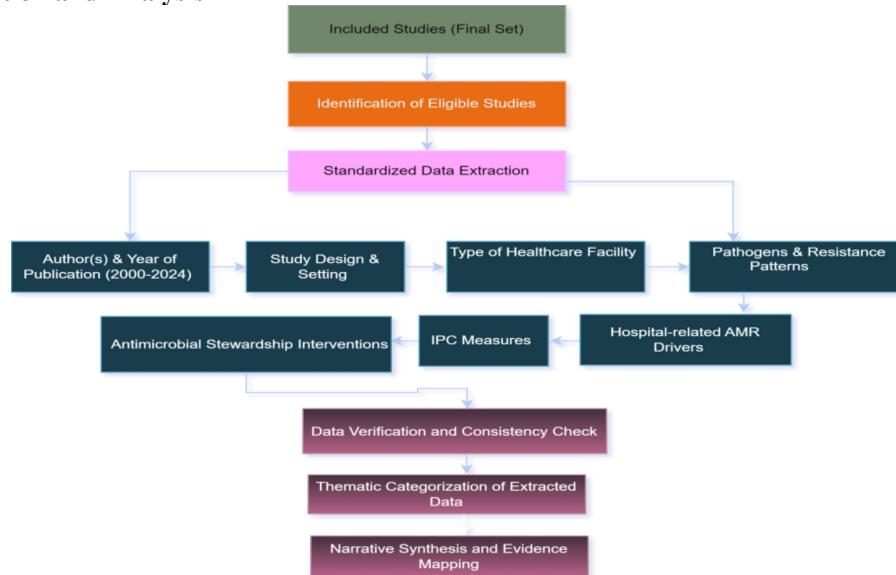
During this phase, **34 records were excluded** because they focused exclusively on community settings, non-hospital environments, editorial or commentary formats, or outcomes unrelated to antimicrobial resistance. Following screening, **44 studies** were retained for full-text assessment.

Eligibility Assessment:

Full-text versions of the **44 studies** were retrieved and evaluated against predefined eligibility criteria. Studies were excluded if they demonstrated insufficient focus on hospital settings, lacked resistance-specific outcomes, or presented overlapping or redundant datasets. As a result, **19 full-text articles were excluded** at this stage.

Final Inclusion:

After completion of the eligibility assessment, **25 studies** met all inclusion criteria and were included in the final qualitative evidence synthesis. These studies formed the analytical foundation for evaluating hospital-related drivers of antimicrobial resistance, healthcare-associated transmission dynamics, and the effectiveness of hospital-based interventions.


Evidence Synthesis and Analytical Approach:

Given the heterogeneity of study designs, settings, and outcomes, a qualitative narrative synthesis was conducted. The included studies were systematically analyzed to identify recurring themes related to antimicrobial stewardship, infection prevention and control practices, healthcare-associated transmission, environmental and operational factors, and surveillance systems. Citation-network visualization further supported identification of influential studies and temporal trends in the literature.

Methodological Rigor and Reporting Standards

This comprehensive evidence-based analysis adheres to PRISMA 2020 reporting principles and follows internationally accepted standards for narrative and scoping-style evidence synthesis. As the study relied exclusively on previously published literature, ethical approval and informed consent were not required. Key authors identified through Litsmaps included Chang, Tseng, Lin, Lee, Parkhill, Stelling, Malik, Giannarellou, and Liang, reflecting strong citation interconnectivity and thematic coherence.

Data Extraction and Analysis

Figure-3. Data Extraction and Analysis Process

Results and Discussion:

This comprehensive evidence-based synthesis demonstrates that hospitals play a pivotal role in the emergence, amplification, and dissemination of drug-resistant infections. Across the 25 studies included in the final synthesis, healthcare facilities consistently functioned as ecological niches where intensive antimicrobial use, high patient vulnerability, and complex care pathways converge to accelerate resistance selection and transmission.

A dominant finding across studies was the strong association between antimicrobial consumption particularly broad-spectrum β -lactams, fluoroquinolones, and carbapenems and the emergence of multidrug-resistant organisms (MDROs). Facilities implementing structured antimicrobial stewardship programs showed consistent reductions in antimicrobial use and subsequent resistance rates, supporting stewardship as the most robust hospital-based intervention currently available. Transmission dynamics within hospitals were largely driven by patient-to-patient spread, mediated through healthcare workers, shared equipment, and contaminated environments. Molecular epidemiology and genomic surveillance studies repeatedly demonstrated clonal expansion of resistant strains, particularly in intensive care and high-dependency units. These findings underscore that resistance persistence is less often due to repeated external introductions and more frequently the result of internal amplification within hospital systems. Environmental reservoirs emerged as critical yet under-addressed contributors to resistance persistence. High-touch surfaces, water systems, and shared medical equipment were frequently contaminated with MDROs, extending transmission risk beyond recommended isolation periods. While enhanced cleaning and disinfection strategies reduced environmental bioburden, their effectiveness was markedly greater when integrated with stewardship and infection prevention measures. Despite advances in surveillance, significant gaps remain in translating microbiological and genomic data into real-time clinical decision-making. Hospitals with integrated surveillance systems demonstrated earlier outbreak detection, yet such systems remain unevenly implemented, particularly in low- and middle-income settings. Overall, the findings highlight that hospital-driven antimicrobial resistance is a systems-level problem. Single interventions implemented in isolation are insufficient. Coordinated strategies integrating antimicrobial stewardship, infection prevention and control, environmental management, and surveillance are essential to mitigate resistance emergence and spread.

10. Knowledge Gaps and Future Research Directions

Identifying knowledge gaps related to the influence of hospital environments on the emergence and spread of drug-resistant infections can guide future research in this critical area. The following topics warrant further investigation:

- ✓ The extent to which hospital settings, patient types, and pathogen groups shape resistance dynamics.
- ✓ The interplay between antimicrobial use, infection prevention, transmission networks, and environmental factors specific to hospitals.
- ✓ The effects of antimicrobial consumption metrics and feedback mechanisms on resistance trends.

Such issues are crucial for developing interventions tailored to the characteristics of individual hospitals and assessing the challenges of extending action beyond single facilities. Addressing these evidence gaps can enhance understanding of the mechanisms and drivers by which hospitals contribute to the emergence and spread of drug-resistant pathogens and inform the design and implementation of appropriate control measures. (Zilahi et al., 2016)

11. Conclusion

The evidence reviewed demonstrates that hospital settings exert a prominent influence on the emergence and spread of drug-resistant infections. Specific mechanisms that enable resistance to develop or expand within healthcare facilities are identified, along with the major interventions that can counteract them. Hospitals provide ideal conditions for drug-resistant pathogens to thrive, and extensive use of antimicrobials creates strong selection pressures. The combination of these two factors causes resistance to emerge and spread and accounts for the disproportionately high occurrence of new resistance mechanisms in healthcare settings. Resistance is often caused by the widespread introduction of resistant organisms into patient populations, with initial human-to-human transmission dominating outbreaks. However, sustained persistence of resistance usually depends on amplification within the hospital environment, primarily through clonal spread or environmental reservoirs. Key drivers of resistance emergence and spread relevant specifically to hospitals include antimicrobial use patterns, infection prevention and control practices, systemic patient flow, and environmental factors (Davey et al., 2006) (H. Karkada et al., 2011). Operationalizing the evidence base on

hospitals and drug resistance not only facilitates the formulation of clear and precise research questions, but also significantly supports better data collection, comprehensive analysis, and the implementation of effective control measures within healthcare systems. A wide range of critical knowledge gaps still exists concerning the development and amplification of resistance in hospital environments, which poses a serious challenge to public health. This is particularly true regarding the intricate influence of existing surveillance on resistance pathways and the overall effectiveness of targeted interventions that are specifically designed to mitigate these pressing resistance issues. Closing these significant knowledge gaps is essential and will enable the strategic design of tailored research programmes that comprehensively investigate the multifaceted role of hospitals and other healthcare facilities in this complex context. Such dedicated efforts are essential to improve our overall understanding of how to control drug-resistant infections effectively and efficiently across a variety of different settings. Ultimately, this comprehensive approach will contribute to better patient outcomes and enhanced public health responses, reinforcing the critical importance of strengthening our healthcare infrastructure against the looming threat of antimicrobial resistance.

Authors' Contributions:

Birupaksha Biswas conceptualized the study, designed the methodology, conducted the literature search and Litmaps-based citation network analysis, synthesized the evidence, and drafted the original manuscript. **To Dr.Damini Joshi** provided overall supervision, critical intellectual input, and methodological guidance, and reviewed the manuscript for scientific rigor. Dr. Twinkle Bharatbhai Patel, Dr. Angel Saluja, Shalom Shungu Chakaringa, and **Vaishnavi Raundal** contributed to data interpretation, thematic analysis, and critical revision of the manuscript. All authors reviewed and approved the final version of the manuscript and agree to be accountable for all aspects of the work.

Availability of Data and Materials:

All data used in this study were derived from previously published and publicly accessible literature. No new datasets were generated or analyzed during the current study. The Litmaps citation network outputs and screening decisions are available from the corresponding author upon reasonable request.

Financial Support and Sponsorship:

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflicts of Interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval and Informed Consent:

Ethical approval and informed consent were not required for this study, as it was based exclusively on secondary analysis of previously published literature and did not involve human participants, animals, or identifiable personal data.

Consent for Publication:

Not applicable. This study does not contain any individual person's data in any form.

Copyright:

© 2025 The Author(s). This manuscript is an original work and has not been published previously nor is it under consideration for publication elsewhere. Any future publication will comply with the copyright and licensing policies of the publishing journal.

Abbreviations:

AMR – Antimicrobial Resistance

AR – Antimicrobial Resistance

DRO – Drug-Resistant Organism

MDRO – Multidrug-Resistant Organism

MDR – Multidrug Resistant

HAI – Healthcare-Associated Infection

HCAI – Healthcare-Associated Infection
 IPC – Infection Prevention and Control
 ASP – Antimicrobial Stewardship Program
 ICU – Intensive Care Unit
 MRSA – Methicillin-Resistant *Staphylococcus aureus*
 VRE – Vancomycin-Resistant *Enterococcus*
 MDR-GN – Multidrug-Resistant Gram-Negative bacteria
 ESBL – Extended-Spectrum β -Lactamase
 CRKP – Carbapenem-Resistant *Klebsiella pneumonia*
 CRE – Carbapenem-Resistant *Enterobacteriaceae*
 C. difficile – *Clostridioides difficile*
 WHO – World Health Organization
 ECDC – European Centre for Disease Prevention and Control
 CDC – Centers for Disease Control and Prevention
 OECD – Organization for Economic Co-operation and Development
 SOP – Standard Operating Procedure
 PRISMA – Preferred Reporting Items for Systematic Reviews and Meta-Analyses
 ICMJE – International Committee of Medical Journal Editors
 POCT – Point-of-Care Testing

12. References:

1. Andersson, D. I., Nicoloff, H., & Hjort, K. (2022). Mechanisms and clinical relevance of bacterial heteroresistance. *Nature Reviews Microbiology*, 20(5), 257–269. <https://doi.org/10.1038/s41579-021-00655-9>
2. Andersson, D. I. (2018). The biological cost of mutational antibiotic resistance. *Annual Review of Microbiology*, 72, 375–392. <https://doi.org/10.1146/annurev-micro-090817-062646>
3. Andersen, B. M. (2018). *Background information: Isolation routines*. In Prevention and control of infections in hospitals: Practice and theory (5th ed., pp. 1–22). Springer. https://doi.org/10.1007/978-3-319-99921-0_1
4. Apisarnthanarak, A., & Weber, D. J. (2018). *Environmental cleaning in resource-limited settings*. Current Treatment Options in Infectious Diseases, 10(1), 48–54. <https://doi.org/10.1007/s40506-018-0149-9>
5. Barlam, T. F., Cosgrove, S. E., Abbo, L. M., MacDougall, C., Schuetz, A. N., Septimus, E. J., Srinivasan, A., Dellit, T. H., Falck-Ytter, Y. T., Fishman, N. O., Hamilton, C. W., Jenkins, T. C., Lipsett, P. A., Malani, P. N., May, L. S., Moran, G. J., Neuhauser, M. M., Newland, J. G., Ohl, C. A. Trivedi, K.K. (2016). Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. *Clinical Infectious Diseases*, 62(10), e51–e77. <https://doi.org/10.1093/cid/ciw118>
6. Bassetti, M., Kanj, S. S., Kiratisin, P., Rodrigues, C., Van Duin, D., Villegas, M. V., & Yu, Y. (2022). *Early appropriate diagnostics and treatment of MDR Gram-negative infections*. *JAC-Antimicrobial Resistance*, 4(5), dlac089. <https://doi.org/10.1093/jacamr/dlac089>
7. Baur, D., Gladstone, B. P., Burkert, F., Carrara, E., Foschi, F., Döbele, S., & Tacconelli, E. (2017). Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and *Clostridium difficile* infection: a systematic review and meta-analysis. *The Lancet Infectious Diseases*, 17(9), 990–1001. [https://doi.org/10.1016/S1473-3099\(17\)30325-0](https://doi.org/10.1016/S1473-3099(17)30325-0)
8. Bonnin, R. A., et al. (2018). Genomic insights into the dissemination of carbapenemase-producing *Enterobacteriaceae*. *Antimicrobial Agents and Chemotherapy*, 62(5), e02420-17. <https://doi.org/10.1128/AAC.02420-17>
9. Browne, A. J., Kashef Hamadani, B. H., Kumaran, E. A. P., Rao, P., Longbottom, J., Harriss, E., Moore, C. E., Dunachie, S., Basnyat, B., Baker, S., Lopez, A. D., Day, N. P. J., Hay, S. I., & Dolecek, C. (2020). *Drug-resistant enteric fever worldwide, 1990 to 2018: A systematic review and meta-analysis*. *BMC Medicine*, 18(1), Article 1. <https://doi.org/10.1186/s12916-019-1443-1>
10. Cassini, A., Höglberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., Colomb-Cotinat, M., Kretzschmar, M. E., Devleesschauwer, B., Cecchini, M., Ouakrim, D. A., Oliveira, T. C., Struelens, M. J., Suetens, C., Monnet, D. L., & ECDC Burden of AMR Collaborative Group. (2019). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant

bacteria in the EU and EEA. *The Lancet Infectious Diseases*, 19(1), 56–66. [https://doi.org/10.1016/S1473-3099\(18\)30605-4](https://doi.org/10.1016/S1473-3099(18)30605-4)

11. Castro-Sánchez, E., Gilchrist, M., Ahmad, R., Courtenay, M., Bosanquet, J., & Holmes, A. H. (2019). *Nurse roles in antimicrobial stewardship: Lessons from public sector models of acute care service delivery in the United Kingdom*. *BMC Nursing*, 18, Article 162. <https://doi.org/10.1186/s12912-019-0363-7>
12. Chemaly, R. F., Simmons, S., Dale, C., Ghantoi, S. S., Rodriguez, M., Gubb, J., Stachowiak, J., & Stibich, M. (2014). The role of the healthcare environment in the spread of multidrug-resistant organisms: update on current best practices for containment. *Therapeutic Advances in Infectious Disease*, 2(3–4), 79–90. <https://doi.org/10.1177/2049936114543287>
13. Chia, P. Y., et al. (2020). Hospital environment and MDRO transmission. *Antimicrobial Resistance & Infection Control*, 9, 10. <https://doi.org/10.1186/s13756-020-0685-1>
14. Cohen, B., Liu, J., Cohen, A. R., & Larson, E. (2018). *Association between healthcare-associated infection and exposure to hospital roommates and previous bed occupants with the same organism*. *Infection Control & Hospital Epidemiology*, 39(5), 541–546. <https://doi.org/10.1017/ice.2018.22>.
15. Chia, P. Y., Sengupta, S., & Lye, D. C. (2020). The role of the hospital environment in transmissions of multidrug-resistant gram-negative organisms. *Antimicrobial Resistance & Infection Control*, 9, 10. <https://doi.org/10.1186/s13756-020-0685-1>
16. Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., & WHO Pathogens Priority List Working Group. (2018). *Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria*. *The Lancet Infectious Diseases*, 18(3), 318–327. [https://doi.org/10.1016/S1473-3099\(17\)30753-3](https://doi.org/10.1016/S1473-3099(17)30753-3)
17. Davey, P., Brown, E., Fenelon, L., Finch, R., Gould, I., Holmes, A., Ramsay, C., Taylor, E., Wiffen, P., & Wilcox, M. (2006). *Systematic review of antimicrobial drug prescribing in hospitals*. *Health Technology Assessment*, 10(36), 1–164. <https://doi.org/10.3310/hta10360>
18. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. *Microbiology and Molecular Biology Reviews*, 74(3), 417–433. <https://doi.org/10.1128/MMBR.00016-10>
19. Dancer, S. J. (2014). Controlling hospital-acquired infection. *Journal of Hospital Infection*, 86(1), 1–6. <https://doi.org/10.1016/j.jhin.2013.09.006>
20. Davey, P., et al. (2017). Interventions to improve antibiotic prescribing practices. *Cochrane Database of Systematic Reviews*, CD003543. <https://doi.org/10.1002/14651858.CD003543.pub4>
21. Dancer, S. J. (2014). Controlling hospital-acquired infection. *Journal of Hospital Infection*, 86(1), 1–6. <https://doi.org/10.1016/j.jhin.2013.09.006>
22. David, M. Z., & Daum, R. S. (2010). Community-associated methicillin-resistant *Staphylococcus aureus*: Epidemiology and clinical consequences. *Clinical Microbiology Reviews*, 23(3), 616–687. <https://doi.org/10.1128/CMR.00081-09>
23. Fluit, A. C. (2018). Towards more virulent and resistant pathogens. *Clinical Microbiology and Infection*, 24(6), 590–593. <https://doi.org/10.1016/j.cmi.2017.12.018>
24. Founou, R. C., et al. (2017). Clinical and economic impact of antibiotic resistance. *Journal of Global Antimicrobial Resistance*, 8, 1–7. <https://doi.org/10.1016/j.jgar.2016.09.002>
25. Giamarellou, H., Galani, L., Karavasilis, T., Ioannidis, K., & Karaiskos, I. (2023). *Antimicrobial stewardship in the hospital setting: A narrative review*. *Antibiotics*, 12(10), 1557. <https://doi.org/10.3390/antibiotics12101557>
26. Ghosh, S., Bornman, C., & Zafer, M. M. (2018). Antimicrobial resistance threats in the emerging COVID-19 pandemic: Where do we stand? *Journal of Infection and Public Health*, 11(3), 366–372. <https://doi.org/10.1016/j.jiph.2018.01.005>
27. Hays, J. P., Mitsakakis, K., Luz, S., van Belkum, A., Becker, K., van den Bruel, A., Harbarth, S., Rex, J. H., Skov Simonsen, G., Werner, G., Di Gregori, V., Lüdke, G., van Staa, T., Moran-Gilad, J., & Bachmann, T. T. (2019). *The successful uptake and sustainability of rapid infectious disease and antimicrobial resistance point-of-care testing requires a complex “mix-and-match” implementation package*. *European Journal of Clinical Microbiology & Infectious Diseases*, 38(6), 1015–1022. <https://doi.org/10.1007/s10096-019-03492-4>
28. Hurlmann, M., et al. (2020). Genomic surveillance of multidrug-resistant organisms in hospital networks. *The Lancet Infectious Diseases*, 20(3), 331–340. [https://doi.org/10.1016/S1473-3099\(19\)30630-6](https://doi.org/10.1016/S1473-3099(19)30630-6)
29. Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. *The Lancet*, 387(10014), 176–187. [https://doi.org/10.1016/S0140-6736\(15\)00473-0](https://doi.org/10.1016/S0140-6736(15)00473-0)

30. Harbarth, S., et al. (2015). AMR: One world, one fight! *Antimicrobial Resistance & Infection Control*, 4, 49. <https://doi.org/10.1186/s13756-015-0091-2>
31. Henry, E. J., Smith, R. B., Collins, M., Bird, S. J., Gowland, P., & Cassella, J. P. (2017). *Infection control in the UK: An antimicrobial resistance perspective*. *International Journal of Infection Control*, 13(2). <https://doi.org/10.3396/IJIC.v13i2.011.17>
32. Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). *Understanding the mechanisms and drivers of antimicrobial resistance*. *The Lancet*, 387(10014), 176–187. [https://doi.org/10.1016/S0140-6736\(15\)00473-0](https://doi.org/10.1016/S0140-6736(15)00473-0)
33. Jansen, W. T. M., van der Bruggen, J. T., Verhoef, J., & Fluit, A. C. (2006). *Bacterial resistance: A sensitive issue: Complexity of the challenge and containment strategy in Europe*. *Drug Resistance Updates*, 9(3), 123–133. <https://doi.org/10.1016/j.drup.2006.06.002>
34. Karkada, U. H., Adamic, L. A., Kahn, J. M., & Iwashyna, T. J. (2011). *Limiting the spread of highly resistant hospital-acquired microorganisms via critical care transfers: A simulation study*. *Critical Care Medicine*, 39(6), 1469–1476. <https://doi.org/10.1097/CCM.0b013e31820eb4c0>
35. Kizny Gordon, A. E., Mathers, A. J., Cheong, E. Y. L., Gottlieb, T., Kotay, S., Walker, A. S., Peto, T. E. A., Crook, D. W., & Stoesser, N. (2017). *The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections — a systematic review of the literature*. *Clinical Infectious Diseases*, 64(10), 1435–1444. <https://doi.org/10.1093/cid/cix132>
36. Klein, E. Y., Sun, L., Smith, D. L., & Laxminarayan, R. (2013). The changing epidemiology of methicillin-resistant *Staphylococcus aureus* in the United States: A national observational study. *American Journal of Epidemiology*, 177(7), 666–674. <https://doi.org/10.1093/aje/kws273>
37. Karanika, S., Karantanos, T., Arvanitis, M., Grigoras, C., & Mylonakis, E. (2016). Fecal colonization with extended-spectrum beta-lactamase-producing *Enterobacteriaceae* and risk factors among healthy individuals: A systematic review and meta-analysis. *Clinical Infectious Diseases*, 63(3), 310–318. <https://doi.org/10.1093/cid/ciw283>
38. Logan, L. K., & Weinstein, R. A. (2017). The epidemiology of carbapenem-resistant *Enterobacteriaceae*: The impact and evolution of a global menace. *The Journal of Infectious Diseases*, 215(suppl_1), S28–S36. <https://doi.org/10.1093/infdis/jiw282>
39. Lowman, W. (2015). *Key to antimicrobial stewardship success: Surveillance by diagnostic microbiology laboratories*. *South African Medical Journal*, 105(5), 359–360. <https://doi.org/10.7196/SAMJ.9615>
40. Luyt, C. E., Bréchot, N., Trouillet, J. L., & Chastre, J. (2014). *Antibiotic stewardship in the intensive care unit*. *Critical Care*, 18(5), 480. <https://doi.org/10.1186/s13054-014-0480-6>
41. Morel, C. M., de Kraker, M. E. A., Harbarth, S., Gastmeier, P., Heuer, O. E., Hopkins, K. L., Park, B. J., Patel, J., Plachouras, D., Srinivasan, A., Stelling, J., & Tacconelli, E. (2021). *Surveillance of resistance to new antibiotics in an era of limited treatment options*. *Frontiers in Medicine*, 8, Article 652638. <https://doi.org/10.3389/fmed.2021.652638>
42. Mody, L., Washer, L. L., Kaye, K. S., Gibson, K., Saint, S., Reyes, K., Cassone, M., Mantey, J., Cao, J., Altamimi, S., Perri, M., Sax, H., Chopra, V., & Zervos, M. (2019). *Multidrug-resistant organisms in hospitals: What is on patient hands and in their rooms?* *Clinical Infectious Diseases*, 69(11), 1837–1844. <https://doi.org/10.1093/cid/ciz092>
43. Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., McManigal, B., ... Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. *The Lancet*, 399(10325), 629–655. [https://doi.org/10.1016/S0140-6736\(21\)02724-0](https://doi.org/10.1016/S0140-6736(21)02724-0)
44. Meijer, S. E., et al. (2019). Environmental stressors and antimicrobial resistance selection in hospital settings. *Current Opinion in Microbiology*, 51, 37–43. <https://doi.org/10.1016/j.mib.2019.10.002>
45. Nordmann, P., Naas, T., & Poirel, L. (2011). Global spread of carbapenemase-producing *Enterobacteriaceae*. *Emerging Infectious Diseases*, 17(10), 1791–1798. <https://doi.org/10.3201/eid1710.110655>
46. Naylor, N. R., Atun, R., Zhu, N., Kulasabanathan, K., Silva, S., Chatterjee, A., Knight, G. M., & Robotham, J. V. (2018). Estimating the burden of antimicrobial resistance: A systematic literature review. *Antimicrobial Resistance & Infection Control*, 7, 58. <https://doi.org/10.1186/s13756-018-0336-y>
47. Nazir, A., Nazir, A., Zuhair, V., Aman, S., Rehman Sadiq, U., Hasan, A. H., Tariq, M., Rehman, L. U., Mustapha, M. J., & Bulimeb, D. B. (2025). *The global challenge of antimicrobial resistance: Mechanisms*,

case studies, and mitigation approaches. *Health Science Reports.* Wiley. <https://doi.org/10.1002/hsr2.71077>

48. Nelson, R. E., Hyun, D., Jezek, A., & Samore, M. H. (2022). Mortality, length of stay, and healthcare costs associated with multidrug-resistant bacterial infections among elderly hospitalized patients in the United States. *Clinical Infectious Diseases*, 74(6), 1070–1080. <https://doi.org/10.1093/cid/ciab696>

49. O'Neill, J. (2016). Tackling drug-resistant infections globally: Final report and recommendations. *Review on Antimicrobial Resistance.* <https://doi.org/10.13140/RG.2.2.31697.56165>

50. Palmore, T. N., & Henderson, D. K. (2013). Managing transmission of carbapenem-resistant Enterobacteriaceae in healthcare settings: a view from the trenches. *Clinical Infectious Diseases*, 57(11), 1593–1599. <https://doi.org/10.1093/cid/cit531>

51. Peacock, S. J., Parkhill, J., & Brown, N. M. (2018). *Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens.* *Microbiology*, 164(10), 1213–1219. <https://doi.org/10.1099/mic.0.000700>

52. Reynolds, K. A., Sexton, J. D., Garavito, F., Anderson, B., & Ivaska, J. M. (2021). *Impact of a whole-room atomizing disinfection system on healthcare surface contamination, pathogen transfer, and labor efficiency.* *Critical Care Explorations*, 3(2), e0340. <https://doi.org/10.1097/CCE.0000000000000340>

53. Sharma, H. K., Singh, R., Grover, A., Malik, R., Triveni, Singh, S., Lather, V., & Vijay, N. (2025). *Estimating the disease burden of drug-resistant bacterial infections: Present trends and future risks.* In Intech Open. <https://doi.org/10.5772/intechopen.1012085>

54. Stalteri Mastrangelo, R., Hajizadeh, A., Piggott, T., Loeb, M., Wilson, M., Colunga Lozano, L. E., Roldan, Y., El-Khechen, H., Miroshnychenko, A., Thomas, P., Schünemann, H. J., & Nieuwlaat, R. (2022). *In-hospital macro-, meso-, and micro-drivers and interventions for antibiotic use and resistance: A rapid evidence synthesis of data from Canada and other OECD countries.* *Canadian Journal of Infectious Diseases and Medical Microbiology*, 2022, Article 5630361. <https://doi.org/10.1155/2022/5630361>

55. Thakur, D., Baishya, M., Sarma, B., Bora, T. C., & Saikia, R. (2008). *Antimicrobial resistance in Gram-positive and Gram-negative bacteria: Progress and challenges.* In *Microbial Biotechnology* (pp. 349–375). New India Publishing Agency.

56. Tseng, S.-H., Lee, C.-M., Lin, T.-Y., Chang, S.-C., & Chang, F.-Y. (2011). *Emergence and spread of multidrug-resistant organisms: Think globally and act locally.* *Journal of Microbiology, Immunology and Infection*, 44(3), 157–165. <https://doi.org/10.1016/j.jmii.2011.03.001>

57. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavalieri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., WHO Pathogens Priority List Working Group. (2018). **Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis.** *The Lancet Infectious Diseases*, 18(3), 318–327. [https://doi.org/10.1016/S1473-3099\(17\)30753-3](https://doi.org/10.1016/S1473-3099(17)30753-3)

58. Tacconelli, E., et al. (2018). Surveillance for control of AMR. *The Lancet Infectious Diseases*, 18(3), e99–e106. [https://doi.org/10.1016/S1473-3099\(17\)30485-1](https://doi.org/10.1016/S1473-3099(17)30485-1)

59. van der Togt, M. H., Bakker, M., van der Lely, N., Visser, L. G., van den Broek, P. J., & Speelman, P. (2003). *Epidemiology of antimicrobial resistance in a tertiary care hospital in The Netherlands.* *European Journal of Clinical Microbiology & Infectious Diseases*, 22(5), 327–334. <https://doi.org/10.1007>

60. Wang, M., Wei, H., Zhao, Y., Shang, L., Di, L., Lyu, C., & Liu, J. (2019). Analysis of multidrug-resistant bacteria in 3,223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. *Bosnian Journal of Basic Medical Sciences*, 19(1), 86–93. <https://doi.org/10.17305/BJBM.2018.3826>

61. World Health Organization. (2018). Global antimicrobial resistance surveillance system (GLASS) report: Early implementation 2017–2018. *WHO.* <https://doi.org/10.2471/BLT.18.213256>

62. Woerther, P. L., Burdet, C., Chachaty, E., & Andremont, A. (2013). Trends in human fecal carriage of extended-spectrum β -lactamases in the community: Toward the globalization of CTX-M. *Clinical Microbiology Reviews*, 26(4), 744–758. <https://doi.org/10.1128/CMR.00023-13>

63. World Health Organization. (2014). *Antimicrobial resistance: Global report on surveillance* (WHO/HSE/PED/AIP/2014.2). World Health Organization. <https://iris.who.int/handle/10665/112642>

64. Yakob, L., Riley, T. V., Paterson, D. L., Marquess, J., & Clements, A. C. A. (2014). *Assessing control bundles for Clostridium difficile: A review and mathematical model.* *Emerging Microbes & Infections*, 3, Article e43. <https://doi.org/10.1038/emi.2014.43>

65. Yakob, L., Riley, T. V., Paterson, D. L., & Clements, A. C. A. (2014). Antimicrobial resistance and infection prevention and control bundles: A modelling perspective. *Antimicrobial Resistance & Infection Control*, 3, 8. <https://doi.org/10.1186/2047-2994-38>

66. Zilahi, G., Artigas, A., & Martin-Loeches, I. (2016). *What's new in multidrug-resistant pathogens in the ICU?* Annals of Intensive Care, 6(1), 96. <https://doi.org/10.1186/s13613-016-0199-4>