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Abstract: 

This study tests the traits of shaky ancestry flow in a channel accompanying  an 

occasion reliant blockage utilizing the Power-Law fluid model. Mathematical and 

computational models are grown to decide the chief order flow speed, pressure 

slope, resistance and divider clip stress at the throats and at the fault-finding crest of 

the blockage and we interrogate reliance of these quantities on the momentary and 

dimensional variables in addition to on the repetitiveness of the flow swinging 

sooner than expected and the main limits of the flow order. We find that as the 

proportion of blockage raised accompanying period and commonness, the principles 

of the size of the main speed, the resistance and the obstruction cut stress in the 

blockage district raised. We still find that magnitudes of these quantities are greater 

for the Newtonian fluid than for non-Newtonian fluid. 

 

Keywords: Pressure Slop, Blockge, Unsteady Stenosis, Power-Law Fluid Model, 

Blood Flow, non-Newtonian Fluid, Artery Flow. 

  

1. INTRODUCTION: 

 

The stream through stenosed vessels would provide the plausibility of diagnosing the illness in its earlier 

stages, making treatment conceivable indeed some time recently the stenosis gets to be clinically noteworthy. 

As of now we do not have point by point information of stream design in an supply route with a stenosis. 

They happen due to the store of the cholesterol, greasy substance, cellular squander items, calcium and fibrin 

within the inward lining of an artery. 

Many experimental studies reveal that in the vicinity of a stenosis, the shear rate of blood is low and therefore 

the non-Newtonian behavior of blood in that region is quite prominent. Young (1968), Young and Tsai 

(1973),  Morgan and Young (1974) , and MacDonald (1979) have discussed some characteristics of flow of 

blood in stinted arteries by considering the blood flow as a steady Newtonian fluid. Many researchers 

consider that blood flow behaves as a non-Newtonian fluid inside a constricted artery. Furthermore, Hershey 

et al. (1964), Charm et al. (1974), Huckabe and Hahn (1968) have suggested that blood flow less than 20 s-1 

shear rate in small diameter tubes (less than 0.2) can be represented by a Power-Law fluid model.  

Hershey et al. (1964), Merrill (1965), Pedley and Berger (1980) and Jou (2000) have shown that at low shear 

rates the blood flow behaves like a non-Newtonian character in narrow vessels (radius less than 1 mm). 
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Mandal et al. (2005) have inspected the charactertics of blood of stream utilizing distinctive formed stenoses 

and watched that the blood stream experienced much higher resistance with a cosine shaped stenosis than the 

sporadic, smooth and deviated models. 

In this paper, we consider the issue of shaky blood stream through an course with modern composite sine 

formed time subordinate stenosis and examine the characteristics of the blood stream utilizing the Power-

Law fluid demonstrate, one of the trustworthy models, to recreate supply route blood stream. The axial 

velocity, pressure gradient, wall shear stress and impedance (flow resistance) are used to analyze unsteady 

blood flow in an artery using prescribed volume flow rate in contrast to other works using prescribed pressure 

gradient. 

 

2. MATHEMATICAL MODEL 

 

 A mathematical model is an abstract description of a concrete system using mathematical concept and 

language. We recall the hassle of unsteady axisymmetric flow of blood in an artery in the shape of a round 

cylindrical tube of radius  0R  and within the presence of a time structured stenosis. The duration of the artery 

is assumed to be large in assessment to its radius 0R , so that the give up results can be left out. The interior 

Boundary of the tube is partly established alongside a distance 0L   due to the presence of a stenosis. The 

Blood float machine and the geometry are as shown (determine 1) in one on the spot in time. The arterial tube 

is given over a distance 02d L+   within the axial route, d   is the most peak of the stenosis. The critical Peak 

of the stenosis 3 4   is located at a distance 0 2z d L= +  from the origin of the coordinate device. Figure 

2 indicates the geometrical form of the stenosis at onare of a kind time. 

The commanding equatings for bulk preservation and impetus are second hand for the ancestry flow 

structure, and a Power-Law fluid model is secondhand for the vital stickiness. We deem the non-spatial form 

the governing spatial form of the governing for ancestry flow in the axisymmetric form and use tubular 

standards for judging or deciding with r as the branching changeable, z as the principal variable and 

accompanying z-pole ahead the arbor of cylindrical channel hose . 

                                        

 
Figure 1: Arterial flow gadget and geometry. 

 

         
Figure 2: Geometry of time dependent stenosis with varying time. 
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The non-dimensional form of the equations for the axial variable, radial variable, radial rate of change, time, 

radial velocity, axial velocity and pressure are obtained by using 
2

0 0 0, , , , ,L R U W    and 20 0
WL 


as 

scales, respectively. Here 0 is the energetic thickness, 0
0





=   is the kinematic viscosity,  could be a 

reference thickness. 

 

 The most extreme speed within the pivotal course W is the one-dimensional fully-developed stream in a 

tube. U   is the radial  haste scale chosen as 
0W L  , which is  set up by balancing terms in the mass  

durability equation. We have assumed mild stenosis 
0R  , the diameter of the tube 2R0 of the same order as 

L0, and sufficiently small 
0

1eR
L

   
 

 ,where 
eR   is the Reynolds number 

02eR  =  .  

 

Under these  hypotheticals, the governingnon-dimensional equations are studied in this paper. We have 

taken 
0 1R =  mm.

0 1 .L mm= 0.05 .d mm=  0.01mm =  (or 0.03 mm), 10 /W mm s= , 0.3 1eR =   and so 

0

1eR
L

   
 

 in accordance to the physiological conditions given by MeDonald, and Milnor, r  and z are 

non-dimensional spatial variables for simplicity of  memorandum. 

The governing non-dimensional equations for unsteady dimensional laminar blood glide in the presence of 

a moderate stenosis case are considered under practical situations. The Reynolds number is sufficiently small, 

the most top of the stenosis is small ( ( )03 ) (4R 1 =   ) and the axial scale 0L  is of the same order as 

the diameter  02R  of the tube. They are : 

 

( ) ( )
0

ru rw

r z

 
+ =

 
        (1a) 

0
p

r


=


                             (1b) 

( )1
0

rw p

t z r r

 
+ + =

  
  (1c) 

The non-dimensional boundary conditions are: 

0u w= =   on (z, t)r R=  (1d) 

0
w

r


=


 on 0r =       (1e) 

Where the shear stress   is given by:  
n

w

r


 
= − 

       
 (1f) 

 
p is the modified pressure, u is the radial component of the flow velocity, w is the axial component of the flow 

velocity, and t is the time variable.  
w

r




 is the shear strain rate of the velocity gradient perpendicular to the 

plane of shear and n   is the flow behavior index. There is no yield stress 0   so the equation does not model 

situation where there is a finite shear stress required to overcome viscosity and start flow. The Power-Law 

fluid model can be subdivided into three different type of fluids based on the value of their flow behavior 

index as follows; n < 1 pseudoplastic (shear-thinning fluids); 1n =   Newtonian fluid, and n > 1dilatants. 

 

( ),R z t   is shape function for the radial structure of the inside boundary of the tube. Its unsteady extension of 

the steady form is given by:    
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( )

( ) ( )

( ) ( ) 

1
1 2 1 1 , 1

2

1
, 1 1 sin[ ] ,

2

1,

t

t

e z b b z b

R z t e z b b z b

otherwise





 

  

−

−


+ − − − +   +  




= − − −   +





   (1g) 

 

Where 

0

3

4R


 =

,

 tube 0R = radius of tube ,δ=max projection of strenosis, 0 1  is unstready parameter,

0

d
b

L
= , 

0L = length of stenosis , d =  indicates location where stenosis begins. Note that the max (critical) 

height of stenosis is at 0.5,z b= +  Also 0 1.0  . 

Let  
0 1

tR R R e  −= +
 

 (1h) 

Where  

( )

( )

( )0

1 sin , 0.5

1 2 1 , 0.5 1.0

1, 0 , 1.0 2 1.0

z b b z b

R z z b b z b

otherwise z b b z b

 



 − −   +  


= + − − +   +   


  +   +

 (1i) 

( )

( )

( )1

sin , 0.5

2 1 , 0.5 1.0

0,

z b b z b

R z z b b z b

otherwise

 



 −   +  


= − − − +   +   



 
         (1j) 

At stenosis throat,      
1

6
z b= +  , 

5

6
z b= +

 
 

We write  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 1 1 1, , , , , , z , , , , , z ,tp u w p z u r z w r e p r z u r z w r −= +        (1k) 

r ii  = +  is a complex constant. Subscript "0" are the steady components of the dependent variables and 

those are subscript "1"  are unsteady components of the dependent variables r  and z . 

 

2.1 Steady Case: ( ) ( )0 0 0(r, z), w , ,u r z p z    

 

 
( )0 0(rw )1

0
ru

r r z

 
+ =

    
 

 (2a) 0p

r




 =0

 
 (2b) 0 01

0

n
p w

r
z r r r

    
+ − =  

             

 

(2c) 

The non-dimensional boundary conditions are:     

0 0 0u w= =  on ( )0r R z=  (2d) 

0 0
w

r


=


 on   0r =         (2e) 
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( )

( )

( )0

1 sin , 0.5

1 2 1 , 0.5 1.0

1, 0 , 1.0 2 1.0

z b b z b

R z z b b z b

otherwise z b b z b

 



 − −   +  


= + − − +   +   


  +   +

  (2f)

 
At stenosis throat:        

1
6

z b= +   (3a) 

From (2c) we have: 

0 0

n
w p

r r
r r z

      
− − =    
       

 ,       ( n is a positive number) (3b) 

Integrate with respect to r both side, we get: 

0 0

2

n
w dpr

r dz

 
− = − 
   

1
1

0 01
.

2

n
n

w dp
r

r dz

  
− = − 
  

   (3c) 

Again integrate with respect to r and use boundary condition at 0r R=   , we get: 

( ) ( )1/n 1 1
0

0 0

1
(r, z)

2 1

n n
n n

dp n
w R r

dz n

+ +    
= − −    +    

 (4a) 

Volume flow rate:  
( )0

0 0
0

2
R z

Q rw dr=    

( ) ( )0

1

3 10
0 0 0

0

112
2 1 3 1

nR z n ndp n n
Q rw dr R

dz n n
 

++    
= = −    

+ +   
  (4b) 

Using (4b), we have 

( )
( )

00

3 1

0

3 1 1
2

n

n

n Qdp

dz n R +

+ 
= −  

   

 (4c) 

Pressure drop: 

( ) ( )
1 2

0
0 0 0

0
0 1 2

b dp
p dz p p b

dz

+  
= − = − + 

 
  (4d) 

Flow resistance (impedance): 

0
0

0

p

Q



=

 
 (4e) 

Wall shear stress: 

0

0 0

2
w

R dp

dz
 = −   (4f) 

Shear stress at the stenosis throat is: 

0 0
1w R = −  

 Frictional; force on the wall of artery is: 

0

1 2

0
0

2
b

wF dz 
+

=    (4g) 

Radial velocity: 

0

0
0

1 r

R

w
u dr

r z

 
= −  

 
   (4h) 

 



Journal of Advanced Zoology 
 

Available online at: https://jazindia.com                                                                                                                                     302 

 

2.2 Unsteady case: 

Use (1k) and (1f) in (1c), we assume 0 1   and zeroth order in  , we have equations and results for 

0 0,w p  etc given in above. 

We apply a Taylor series expansion for boundary conditions for ( ), ,w z r t   at 
0r R=  

( )
0 0

2

10 (z) 0t

r R r R r R

w
w w e R

r

 −

= = =


= = + +

      
(5a) 

It is valid for 1  . 

In the order one of  , we find from ((1c-1e) [after (1k) and (1f) are used in (1c-1e)] and after we divide each 

equation by 
te  −
 

 

01 1
1

1
n

wdp w
w r n

dz r r r r


        
− = − − − −   

      

  (5b) 

0
1 1

w
w R

r


=


  at ( )0r R z=

      
 (5c) 

1 0
w

r


=


 at 0r =        (5d)   

 

To derive additional equations (we have two unknowns 1w   and 1p , we need two equations for these 

unknowns), we make use of volume flow rate. Write 

0 1

tQ Q e Q −= +    (5e)   

Where 0Q  is for steady case of Q given by equation (4b)and 

 

 

( )

( ) ( )

0 1

0 0 1 0

,

0

0 1
0

2

0 0 1
0 0 0

2

2 ( )

2 2 2

t

t

R z t

R e R
t

R R e R R
t

Q rwdr

r w e w dr

r w dr r w dr r w dr e O













 

    

−

−

+
−

+
−

=

= +

 = + + +
  





  

(5f)  Thus 

( )
0 0 1

0
1 1 0

0

1
2

tR R e R

t R
Q rw dr rw dr

e








−+

−
= + 

   

   

(5g)   

1Q  is the initial volume flow rate due to the oscillatory part. Prescribing 0Q   and  1Q  (given  ,  and t 

),then Q has some value, which is assumed to be given. 

Now we multiply (5b) by r  , 2  , integrate in r from r = 0 to 0R   , we have 

 

0

12

0 01 1 1
0

2 2

n

r R

R wQ dp w
R n

dz r r





−

=

       
− = − − −     

       

   (5h)  

 
We have from equation (5b) 

2

1 1 1
1 2

dp w w
w A B

dz r r


 
− = − + +

 
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( )
( ) ( )

( )
1 1

1
0 0

1

2 1 1
,

2

n n
nn n

n

n

n dp dp
A B n r

dz dzr

− −
−−    

= − = −   
   

   (5i) 

Using equations (5h) we have: 
2

1 1
12

w w
p qw r

r r

 
= + +

 
    

(5j) 

where  

C A
p

B

−
=  ,  q

B


=  ,  

1

2

0

Q
r

BR




= −

  

(5k)  

 and 

( )1

0

1

0

2 1

2

n
n

n

dpn
C

R dz

−

 
= − 

    

(5l) 

 

The values given for system 0w   in steady state (5b-5d) and (5h) can be resolved numerically. A staggered 

finite difference grid is utilised about that boundary to ensure second order correctness of the Neumann 

(derivative) boundary condition at 0r =  In other words, the r values must be outside of the region where 

0r =  . In order to generate a linear system of equations of the type Aw d=  , where A is a N by N 

tridiagonal matrix and w and d are vectors of dimension N, we discretized the differential equation governing 

the behaviour of iw   where  2,3..... 1i N −  .  

 

The equations were solved using a subroutine. This subroutine uses row interchanges, partial pivoting, and 

Gaussian elimination to solve the equations and get 1p   and 1w  . Then, using these in (1k), we can find w   

and p  , and u  can be found from  

 
1 r

R

w
u r dr

r z

 
= −  

 


 

 (5m) 

 

3. Results and Discussion: 

 

The calculation of the axial velocity field, pressure gradient, impedance (resistance), and wall shear stress 

takes into account many numerical factors that are relevant to the situation at hand in order to better 

understand the physical characteristics of blood flow in an artery with a time-dependent stenosis. For this we 

start from 0.1,0.04 1 =  (maximum height of the stenosis), the frequencies ( )0, 1, 2, 3r = − − − ,

( )0,1,2,3i = , Q = 1 and from 0.3 = .  

 

The results presented in this section appear to be typical of all the computational data, we have collected at 

various parameter values. 

 

3.1 Axial velocity (figure 1: velocity in the z-direction) 

Figure 3 -6 displays the estimated axial velocity w  for several scenarios. Figures 3 and 4 show the axial 

velocity against n time variables for various frequencies 0, 1, 2, 3, 0r i = − − − =  or 1, at 

1, 0.5, 0.3z r = = =  and 0.1 =  and 0.3, respectively presented in Figure 3- Fig.-4.  

 

The findings for the velocity profile of the blood flow at the stenosis throat ( 0.67z = ) for various values of 

the flow behavior index (n) are shown in Figure -3. Now Figure -4 is identical to Figure 3, but with 0.03 =  

instead. Axial velocity is shown to increase as flow behavior index (n) increases. In other words, axial 

velocity increases with time and is larger for Newtonian fluid (n = 1) than for non-Newtonian fluid (n 1). 

Figures- 3 and 4 demonstrate that the featured curves are similar in that as one proceeds away from the axis, 

they gradually expand until they reach the maximum at t = 1.  
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Figure 3: Axial velocity versus time variable for different values of 3r = − 0i =  and for  

0.1, 0.5, 0.67, 0.3, 1, 2 3, 1 3r z n = = = = = . 

 

 
Figure 4: Shows the axial velocity as a function of time for various values of the parameters 

0.03, 0.5, 0.67, 0.3, 1, 2 3,1 3r z n = = = = =   and 3, 0r i = − =  . 

 

The axial velocity grows in size as the frequency grows (for brevity, not illustrated). As can be seen in 

Figures- 3 and 4, the magnitudes of axial velocity rise as the height of the stenosis increases. The axial 

velocity at 0.67z =   for 0.75r =   is computed using the same numbers as in Figures -3 and 4, and it is 

discovered that the magnitude of the axial velocities is less for 0.5r =   (for brevity, figures are not 

provided). 

As the radial variable rises, the magnitude of the axial velocity decreases, as demonstrated in Figures-5 and 6. 

Axial velocity is seen to grow as the flow behaviour index (n) increases and reach a maximum at r = 0. It 

then progressively drops with an increase in artery radius (r) and achieves a minimum value at the stenotic 

wall ( )( )r R z=   for all scenarios taken into consideration. The axial velocity vs the radial variable for 

various frequencies at z = 0.67 (stenosis mouths) and z = 1 (critical height) for 1, 0.3t = =  and 0.1 =  

are shown in Figures- 5 and 6. Figure 6 is identical to Figure-5 with the exception that z = 1. Axial velocities 

at z = 1 are greater than those at z = 0.67. The results show that the axial velocity can drop to virtually zero 

very close to either the stenosis throat or the critical height, which indicates that there is significant friction 

affecting the flow in the area around the stenosis. 
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Figure-5 : Shows the relationship between axial velocity and radial variable for various values of 

0.1, z 0.67, 0.3,n 1, 2 3,1 3 = = = =  and 3, 1r i = − =   

 

 
Figure 6: Shows the axial velocity vs the radial variable for different values of 3, 1r i = − =  as well as for 

0.1, z 1.0, 0.3,n 1, 2 3, 1 3 = = = = . 

 

Our further produced data at the second stenosis throat's axial position 51
6

z = +   showed that the pressure 

gradient, impedance, and wall shear stress values were almost identical to those at the first stenosis throat (

10.5
6

z = + ). 

 

3.2 Pressure gradient (rate of change of pressure along the z-direction, Figure 1) 

Figures 7 and 8 shows the pressure gradient's fluctuation versus axial distance for various values of the 

frequencies 0, 1, 2, 3r = − − − , 0,1,2,3, 1, 0.3, 2, 1i Q n t = = = = =  and 0.1 =  . With the exception 

of 3r = − , Figure 8 is identical to Figure 7. These figures show that the pressure gradient is negative, which 

means that as the axial variable rises, the pressure force drops. Additionally, it should be noted that in all 

circumstances taken into consideration, the pressure gradient has its greatest magnitude at the critical height 

of stenosis, but the pressure gradient is uneven throughout the stenosis area and constant beyond the stenosis 

zone. The narrowest passage of the outline of the stenosis gives rise to maximum magnitude of pressure 

gradient for the Newtonian and non-Newtonian fluid cases. The pressure gradient distributions show a close 
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mirror image of the outline of the stenosis. The higher the frequency, the higher the magnitude of the 

pressure gradient is. We computed pressure gradient with different values of    and it is observed that as the 

size of the stenosis increases, the magnitude of the pressure gradient also increases. That is, more severe 

stenosis can lead to higher blood pressure force in the artery. This result will be useful for medical purpose. 

 

    
Figure 7. Pressure gradient as a function of z for 0.3 = , e=0.1, n=1, 2/3, 1/3, t=1 and for several values 

1r = , 0i = . 

 

                   
Figure 8: Pressure gradient versus z for 0.3 = , e =0.1, n=1, 2/3, 1/3, t=1 and for several values of 3r = −

, 0i = . 

 

3.3 Wall shear stress: 

 Because the cut stress on the arterial obstruction allocation is a main diagnostic determinant to try 

characteristic of ancestry flow through the channels, we have checked the obstruction cut stress for various 

principles of the commonness and several various cases are bestowed in Figure 9 - 12. 

The divider cut stress against moment of truth changing for different principles of the repetitions  

0, 1, 2, 3, 0,1,2,3r i = − − − =  and for 0.3, 0.1 = =  , and z = 0.5+1/6 and 1, are bestowed in composite 

Figure- 9 -10. Figure-10 is the same Figure-9, except for z=1. The importance of the divider cut stress is 

higher at detracting climax than at the blockage neck. The maximum advantage of the obstruction cut stress 

takes place for best index worth (n) at t = 1. For very small recurrences, it takes a significantly very long time 

before obstruction clip stress can enhance abundant and meaningful (for briefness not shown). The curves 

promoted are identical in the sense that they increase from their individual minimum at the axle all at once 

moves away it and permanently reach their maximum at t = 1. From our supplementary dossier we noticed 

that the obstruction cut stress increases as the amount of the blockage raised. 
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The divider clip stress against the principal distance for various principles of the recurrences 

0, 1, 2, 3, 1, 0.3, 1, 1, 1r i Q t   = − − − = = = = =  and 0.1 =   and 0.03 are bestowed in Figure 11 -12. 

Figure-12 is the same Figure-11, except the profit of    is 0.03. It is noticed that divider cut stress increases 

as flow conduct index (n) increases. That is, the obstruction cut stress is less for non-Newtonian than 

Newtonian ancestry flow for a likely blockage magnitude.  

 

   

Figure 9. : Wall shear stress versus t for 2 10.1, 1, , , z 0.67 0.3
3 3

n = = = =   and for various principles 

of the repetitiveness 3 1r i = − = . 

 

  

Figure 10: Wall shear stress versus t for 2 10.1, 1, , , 1.0, 0.3
3 3

n z = = = =  and for various values of 

the repetitiveness 3 1r i = − = . 

 

 

Figure 11: Wall shear stress versus z for 2 10.1, 1, , , 0.3, 1
3 3

n t = = = =  and for various values of the 

repetitiveness 3 1r i = − =  
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Figure 12: Wall shear stress versus z for 2 10.03, 1, , , 0.3, 1
3 3

n t = = = =  and for various values of the 

repetitiveness 3 1r i = − =  

 

It may be visualized that the divider shear stress is determined and certain in the domain outside the blockage 

district, indicating the existence of a definite and never ending force performed for one elapse the channel. 

The wall cut stress distributions show a close exact counterpart of the outline of the blockage. 

 

 In the blockage district, the stress force is changeable and higher than that outside blockage district. Higher 

repetitiveness leads to taller clip stress accompanying its peak profit at detracting altitude. The narrowest 

transition of the outline of the blockage gives make even the best obstruction cut stress for the Newtonian and 

non-Newtonian fluid cases.       

        

As anticipated, the magnitudes of clip stresses are larger as the blockage breadth increases proved in Figure 

11 and Figure 12.  

 

Thus resolving the results, individual can decide the divider cut stress changes with the order reversed 

accompanying the amplitudes of pressure slope.  

 

The study of the stress distributions of the arterial surround the neighbourhood of a blockage is main. It will 

help us to expound the cause of post-stenotic extension (the extension of the arterial divider urgently coming 

after of a blockage) and the growth and progress of arterial blockage. 

 

3.4 Impedance (Resistance) 

When stenosis develops in an artery, one of the most serious issues is the increased resistance (impedance) 

and the associated reduction of the blood inflow by the roadway to the particular vascular bed. 

 

  Figure 13- Figure 14 present the impedance versus time variable for several values of the frequencies, for 

0.1 =   and 0.03, independently.  

 

The angles featured are  analogous in the sense that they increase from their  individual minimum at the axis 

as one moves down from it and eventually reaches the  outside at t =  1. It can be seen from these numbers 

that the impedance is non-negative and it increases as in flow behaviour indicator (n) increases. It's set up 

that the difference in the magnitude of impedance between Newtonian and non-Newtonian fluid increases 

with the stenosis height. It's clear from the description of impedance that under a given pressure grade, a 

lesser impedance will indicate lower inflow of fluid. 

 Therefore the impedance gives a measure of the volume of blood entered by different organs. Hence this is 

an important factor which might play a vital part in the opinion and treatment of heart attack and stroke. 
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Figure 13: Impedance versus t for 2 10.1, 1, , , 0.3
3 3

n = = =   and for various principles of the 

repetitiveness 3 1r i = − = . 

 

 

Figure 14: Impedance versus t for 0.03, 1, 2 3, 1 3, 0.3n = = =   and for various principles of the 

repetitiveness 3, 1r i = − = . 

 

4. CONCULATION: 

 

The study examined unsteady arterial blood flow in time-dependent stenosis using the non-Newtonian 

Power-Law blood fluid flow model. It calculated pressure gradient, flow velocity, impedance, and wall shear 

stress for steady and unsteady cases at critical heights and throats.    The study evaluated various frequencies, 

power index numbers, and stenosis height parameters. Results showed that pressure gradient, flow velocity, 

wall shear stress, and impedance are higher in the stenosis zone than non-stenosis zones. These parameters 

also increase as stenosis height increases. Newtonian fluid (n=1) has higher magnitudes than non-Newtonian 

fluid (n<1) and increases with time. Additionally, flow velocity, pressure gradient, impedance, and wall shear 

stress increase significantly as frequency increases. This study highlights the importance of unsteadiness in 

wall shear stress, emphasizing the oscillation effect. The maximum value coincides with flow rate and varies 

inversely with pressure gradient amplitudes. The mathematical model predicts interesting hemodynamic 

features for physiologists. 
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