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Abstract 

 
The most prevalent cause of dementia and a progressive neurodegenerative 

illness, Alzheimer's disease (AD) has a substantial negative impact on both 

global health and the economy. There is presently no cure, despite much study, 

and treatments like memantine and cholinesterase inhibitors just alleviate 

symptoms. The multifaceted character of AD, comprising intricate genetic, 

epigenetic, and environmental connections, has been brought to light by 

developments in genomics, neuroimaging, and clinical data. Novel 

computational techniques are necessary since traditional methods often fail to 

understand such high-dimensional information. In AD research, artificial 

intelligence (AI), especially machine learning and deep learning, has become a 

game-changing tool. In order to enable early diagnosis, prognosis, biomarker 

identification, and therapy development, artificial intelligence (AI) makes it 

easier to analyze large datasets from next-generation sequencing (NGS), 

transcriptomics, proteomics, imaging, and genome-wide association studies 

(GWAS). AI applications in AD include determining transcriptomic and 

epigenetic biomarkers, discovering new gene-gene interactions, connecting 

neuroimaging indicators with genetic differences, and predicting disease risk 

using genetic risk scores. Furthermore, by combining multifaceted biological 

and clinical data, AI-driven methods facilitate drug discovery, repurposing, and 

clinical trial optimization. Recent research highlights AI's promise in precision 

medicine for AD by showing that it can combine genetic, imaging, and 

biomarker data to reach high prediction accuracy. Nonetheless, there are still 

issues with clinical validation, data heterogeneity, and interpretability. The uses 

of AI in deciphering the genetics and pathophysiology of AD are highlighted in 

this study, along with current advancements and constraints. It also offers 

insights into potential future paths where AI might speed up the conversion of 

complicated data into useful methods for AD diagnosis and therapy. 
 

1. Introduction  

 

Dementia worsens with time in Alzheimer's disease (AD), a neurodegenerative condition that ultimately causes 

individuals to lose their capacity to react to their surroundings. There is presently no cure for AD, with the 

exception of memantine and cholinesterase inhibitors, which may temporarily reduce or stabilize symptoms 

[1]. As the world's population ages, AD becomes a significant societal burden in addition to causing greater 
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personal and familial pain. It also increases the incidence of anxiety and despair among those who care for AD 

patients [2]. According to estimates, 10% of Americans 65 and over now have AD. In the United States, there 

were over 5.8 million AD patients in 2019. This figure might rise to an estimated 13.8 million in the United 

States by 2050, while the global dementia population is expected to reach 131.5 million [3-5]. AD is divided 

into two categories based on the age at which it first manifests: early-onset AD (EOAD) and late-onset AD 

(LOAD). Approximately 5% of all AD cases are EOAD, which affects people under 65. Less than half of these 

individuals have early-onset familial AD, a causative mutation that shows up as an autosomal dominant 

inheritance pattern. Patients over 65 are at risk for LOAD, which makes up around 95% of all AD cases. AD 

may also be separated into familial and sporadic instances based on the presence of family aggregation. 

Although EOAD is more common in familial situations, LOAD is also present. Over 90% of individuals with 

AD are sporadic instances, most of whom also have LOAD [6].  

 

 
 

Although an estimated 70% of the risk is due to hereditary factors [9–12], the etiology for the majority of AD 

cases is still unknown and is believed to be the consequence of a complex interplay between genetic and 

environmental variables engaged in neuronal and immunological processes [7, 8]. The amyloid hypothesis is 

now a widely accepted idea regarding the etiology of AD. Although the precise pathological process is 

unknown, this theory contends that a number of factors lead to an imbalance in the production and clearance 

of β-amyloid, which causes β-amyloid to accumulate in the brain. This accumulation causes 

neuroinflammation and neurofibrillary tangles to form in neurons, which ultimately cause neuronal 

dysfunction and death [13].  

 

Finding the genetic and environmental causes of illness, or etiology studies, is one of the main objectives of 

medical research. The findings of these studies may provide hints for future study on AD prevention and 

therapy. Newton's technique, which stresses that the world's seeming complexity can be resolved by studying 

events and breaking them down into their most basic components, has been extensively used in scientific 

research since the 17th century, including medical research. In reality, by using this practice, we have had 

tremendous success. Many illnesses caused by one or more causes have been effectively prevented and treated 

in the medical sector. For instance, because to vaccinations, smallpox has been eradicated worldwide. 

Unfortunately, there are currently no effective preventative or reversible treatment options for some complex 

diseases, like AD, primarily because these conditions entail intricate interactions between numerous variables, 

and human complexity precludes the use of a simplified model to comprehend these conditions [14, 15]. These 

issues involving vast amounts of data and very complex structures that are beyond the human brain's processing 

capacity may now be resolved because to the quick advancement of artificial intelligence (AI) technology in 
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recent years [16–18]. In terms of the quantity of AI research done, AD came in fourth place out of all disorders 

[19]. The phenomenology of neuropsychiatric illnesses is influenced by complex, social dynamics, and AI 

takes an integrative approach, modeling neurobiological components as functional modules of pathology [20]. 

Research on AD pathogenesis has focused on genetic variables since they are the primary cause of the majority 

of AD cases. Research involving genetic data has grown rapidly in recent years due to the widespread use of 

next-generation sequencing and microarray technologies. AI technology is desperately needed in this 

circumstance. AI-powered genetic research on AD is now expanding steadily. As a result, the research in this 

area has been thoroughly reviewed in this article, which also offers an outlook on the future course of 

advancements. 

 

2. Artificial Intelligence 

 

One may argue that using tools is a natural "extension" of the human body's capabilities. Similarly, computers 

may work as "extensions" of the human brain. AI has or almost "will surpass human performance in several 

domains" due to the rapid expansion of computer power, the collection of vast quantities of data, and the theory 

of computation [21, 22]. Humanity's most valuable asset for surviving on Earth has been and continues to be 

intelligence. There is cause for optimism that human productivity will usher in a new age as AI technology 

advances. There are numerous definitions of artificial intelligence (AI) from various angles, but the most 

widely accepted ones are as follows: AI is a field of computer science that makes it possible for computers to 

carry out tasks that typically require human intelligence; another definition is that AI is a system that senses 

its surroundings and acts in a way that maximizes the likelihood of finishing a task [23]. Numerous algorithms, 

techniques, or strategies have been devised to accomplish "intelligent" operations. The primary ways of AI 

technology include learning from examples, knowledge-based reasoning and planning, searching for solutions 

to problems, and uncertain knowledge-based reasoning. Uninformed or heuristic searches, local searches, 

optimizations, evolutionary computations, and adversarial searches are some of the techniques or tactics for 

addressing problems via searching. Logic programming, automated reasoning, and ontological engineering are 

examples of knowledge-based planning and reasoning. Bayesian networks, hidden Markov models, Kalman 

filters, a utility theory, and decision networks are examples of uncertain knowledge-based reasoning. Machine 

learning and mathematical/statistical categorization are the foundations of learning from instances. The most 

popular AI method among them in both academia and business is machine learning [24, 25]. 

  

The goal of machine learning, a branch of artificial intelligence, is to create computer programs that become 

better on their own with practice. It analyzes the data and finds patterns in it to deal with datasets. The two 

main types of machine learning techniques are supervised and unsupervised learning algorithms. Supervised 

learning algorithms work best for classification and regression problems because they employ labeled data, or 

training data that yields the right answer when given an input. Artificial neural networks, Bayesian networks, 

support vector machines, decision trees, random forests, and K-nearest neighbors are examples of prevalent 

algorithms. Unsupervised learning algorithms, on the other hand, work with unlabeled data and must identify 

and understand innate patterns in the collection. K-means, distance clustering, density clustering, hierarchical 

clustering, and Markov chain are examples of popular methods. Additionally, certain algorithms—like 

reinforcement learning—combine supervised and unsupervised learning [24, 26, 27].  

 

An even more specialized subset of AI and machine learning is called deep learning. One kind of machine 

learning algorithm that mimics how the human brain solves issues is called deep learning. It is made up of 

many "layers," each of which has a different number of nodes that are all linked in a network. When data enters 

the first "layer," it undergoes a number of linear modifications before finally producing a result. Depending on 

how it is used, it may be enhanced, monitored, or unsupervised [28]. Prior to artificial intelligence, a lot of 

projects were carried out using intricate rule-based algorithms that only became more complex as more data 

anomalies were found. To attempt to account for every potential quirk, we can keep adding rules and 

algorithms, but this is time-consuming and difficult. But these patterns can be easily learned by a machine 

learning application. Additionally, machine learning will be able to find more complicated or abstract patterns 

included in the data. The ability of a computer to recognize patterns and logic in data improves with increasing 

data amount, quality, and diversity. The new methods for gathering vast volumes of biological data, such 

genomic and other omics biology information, make this data explosion particularly apparent in the medical 

field [29]. As a result, AI will play a significant role in healthcare applications such as illness prevention, 

detection, diagnosis, and treatment, health system management, and medical research development [30-33].  

 



Journal Of Advanced Zoology 
 

Available online at: https://jazindia.com    260 

 
 

3. AI's Use in Medicine 

 

The development of AI technology in clinical medicine, health systems management, public health, and 

medical research is now being undertaken by several IT businesses and academic organizations. In clinical 

medicine, advances in computer vision, image and video analysis, and artificial intelligence (AI) have greatly 

enhanced picture recognition and categorization, which is very advantageous for medical imaging. These 

technologies have shown excellent outcomes in several areas and have been created for imaging diagnosis in 

radiology [34], pathology [35], dermatology [36], ophthalmology [37], cardiology [38], neurology [39], 

gastrointestinal [40], and surgery [41]. Additionally, by learning the health trajectory from a large number of 

individuals, AI can forecast the course of illness and the impact of therapy. For example, a deep learning system 

for the early prediction of AD was built using 18F-fluorodeoxyglucose PET of the brain, and it obtained 82% 

specificity and 100% sensitivity at an average of 75.8 months before the final diagnosis [42]. As a result, it is 

thought that using AI technology in clinical settings might enhance the standard of medical care, which would 

be especially beneficial for doctors who lack education or experience, particularly in underdeveloped nations 

with limited access to healthcare resources [43]. AI may also increase access to healthcare services; for 

instance, patients can utilize self-care apps on their smartphones or smart watches, some of which have FDA 

approval. Precision medicine is customized to the patient's individual healthcare plan and clinical choices, 

taking into account the patient's genetics, surroundings, and lifestyle. Large volumes of genetic, environmental, 

and lifestyle data may be analyzed and processed by AI technology, enabling the use of precision medicine in 

clinical settings. Furthermore, it could be crucial for public health and health system management [17, 27, 30, 

44-46].  

Genomes, transcriptomes, proteomics, cytological images, chemical and biological macromolecular structures, 

interaction information, and clinical data from electronic medical records are just a few examples of the 

complex biological processes from which a vast amount of laboratory and clinical research data can be 

extracted using currently available biological and medical technologies in the field of biomedical research. AI 

technology may aid in the creation and screening of therapeutic compounds, as well as the design and analysis 

of clinical trials, by analyzing and processing huge and complicated biological data to help elucidate the 

corresponding physiological and pathological pathways. Predicting the binding affinities of transcription 

factors, DNA- and RNA-binding proteins, cis-regulatory/enhancer elements, DNA methylation sites, histone 

modifications, chromatin accessibility, transcription start sites, tissue-regulated splicing, unique gene 

expression and translation efficacies, transcriptome patterns in a given cell or condition, microRNA precursors 

and binding targets, variant calling, functional consequences of noncoding variants, and pathogenicity of 

coding variants are all ways that artificial intelligence can assist gene-level research. AI may also be used to 

create protein-coding DNA sequences, detect long noncoding RNAs, and create DNA probes for protein 

binding microarrays. Deep learning seems to be the most effective method for analyzing various data sources 
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and finishing genomic modeling jobs as the quantity of genomic data increases rapidly; yet, the prediction of 

complex human disease phenotypes is still far from being developed [47–50]. The secondary structure, solvent-

accessible surface area, protein contact maps, and disordered areas may all be predicted by current AI 

technologies for protein level study; nevertheless, tertiary protein structure prediction remains difficult [51, 

52]. Automated high-content, high-throughput imaging technology is a valuable tool for examining biological 

concerns at the cell and tissue level. It may also be employed at any stage of the development of target-based 

therapies. Signal denoising and enhancement, segmentation, label-less imaging, live cell imaging, imaging-

based phenotypic, single cell tracking, and modeling of rebuilt pedigree trees are some of the specific tasks 

that artificial intelligence does in image processing [53, 54]. The creation of novel medications may be 

significantly accelerated with the use of AI technologies in the chip laboratory, cell-based or organoid-based 

tests, and autonomous chemical synthesis. AI may be used to evaluate high-throughput compound screening 

data and literature, as well as to suggest strategies for automated chemical synthesis and preliminary molecular 

screening. Following the acquisition of bioassay data, a new molecular optimization strategy may be suggested 

and the bioassay can be conducted once again by upgrading the machine learning model. Thus, a high-

throughput bioassay and AI design-based automated drug development cycle is created [55]. One quick and 

inexpensive method of medication development is drug repurposing. By examining extensive transcriptomics, 

molecular structural data, and clinical databases, artificial intelligence (AI) can forecast medication 

repurposing [56]. Researchers think that using AI technology in the planning and execution of clinical trials 

might assist address the issue of clinical trials being the bottleneck of new medication development. AI may 

assist in the selection of a subset of the population that may be susceptible to novel medications by evaluating 

clinical and genetic data from patients. It can also assist in the recruitment of participants by connecting them 

with clinical trials. A mobile, real-time patient monitoring system and the ability to anticipate a patient's 

dropout risk may be obtained by combining AI technology with wearable sensors and noninvasive diagnostics 

during clinical trials [57]. There aren't many instances of clinical applications, despite the fact that research on 

AI-based medical technology has advanced quickly and has many potential uses. One may argue that medical 

technology based on AI is still in its early stages [30, 58]. 

 

4. Genetics Research 

 

According to estimates, genetic variables may account for around 70% of the etiologic role in AD cases other 

than early-onset familial AD [9, 10]. Single nucleotide variations (SNVs), tandem repeat variations, small 

insertions and deletions, large segment deletions and duplications (copy number variations), chromosome 

rearrangements (duplication, deletion, inversion, and translocation), and aneuploidy or polyploidy (often 

leading to major genetic diseases) are among the genetic variations among individuals in the population [59]. 

The noncoding portion of the human genome makes up around 99 percent of its total size, which is about 3.2 

× 109 base pairs (bp). Along with producing transfer RNA, ribosomal RNA, and microRNAs, the noncoding 

region also contains regulatory elements (promoters, enhancers, silencers, and insulators); long noncoding 

RNAs; and chromosome structural elements like satellite DNA and telomeres [50, 60, 61]. Four methods have 

been used to find genetic variations linked to the onset of AD in the human genome: next-generation 

sequencing (NGS)-based association studies, genome-wide association studies (GWAS), candidate 

gene/pathway association studies, and genetic linkage analyses [62]. 

One of the first methods for determining the genetic foundation of Mendelian characteristics was genetic 

linkage analysis. Using genetic markers and segregation analysis in pedigrees, it maps genetic loci [63]. Early-

onset familial AD was identified by genetic linkage analysis to include causative mutations in three genes: 

amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) [57]. Accordingly, they are 

found on chromosomes 1, 14, and 21 [64]. The pathological alterations of EOAD are caused by an additional 

copy of chromosome 21 that is carried by people with Down syndrome [65].  

Small-scale, low-resolution association studies based on what is known about certain genes are known as 

candidate gene/pathway techniques. Alleles of the apolipoprotein E gene (APOE) have been shown to be risk 

factors for late-onset AD using this method. Despite its lack of usage nowadays, this approach may still be 

useful depending on the gene or population, for as when examining polymorphisms with low allele frequencies 

[66,67].  

GWAS may evaluate the relationship between hundreds of single nucleotide polymorphisms (SNPs) of a 

disease and provide data on genetic variants linked to the risk of certain illnesses, thanks to advancements in 

microarray technology [68]. Large GWAS samples of LOADs including tens of thousands of patients have 

been carried out by certain international cooperation initiatives, such as the International Alzheimer's Disease 

Project (IGAP) [69, 70].  
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All of the genetic variants mentioned above, with the exception of APOE, have little impact on the 

pathophysiology of AD. It may be required to take into account the impact of many variations (additive effects), 

epistasis (multiplicative effects), and the interaction of genes with the environment in order to comprehend the 

etiology of AD other than early-onset familial AD. By counting the number of disease-related alleles and their 

ability to predict AD risk, genetic risk scores may be used to characterize the combined impact of many 

variations on the pathophysiology of AD. The highest prediction accuracy for AD was 82%, according to a 

genetic risk score research based on an SNP dataset including 1,554 controls and 3,049 AD patients [83]. While 

individual gene analyses revealed no impact, interactions were discovered in certain genes that had never 

before been linked to AD in epistasis investigations, such as the interacting SNP pair in KHDRBS2 and CRYL1 

[84]. The findings provide evidence that the epistasis effect has a role in some of the hereditary components 

of AD. Research on gene-to-gene interactions in AD is compiled in a review paper by Raghavan and Tosto 

[85]. Functional genomics aims to provide a complete explanation of the intricate relationship between 

genotypes and phenotypes by connecting omics data from transcriptomics, proteomics, metabolomics, and 

genomes. APP metabolism, inflammation, lipid metabolism, tau protein binding, endocytic/vesicular-mediated 

transport, and synaptic function pathways were the primary areas of enrichment for AD-related genetic 

variations, according to functional pathway analysis [11, 62, 70, 71, 86].  

Numerous environmental factors, such as brain trauma, low educational attainment, cardiovascular disease 

risk factors, lifestyle choices (such as smoking, drinking, exercising, and being around greenery), air pollution 

[88], exposure to heavy metals (such as manganese and mercury) [89, 90], pesticide exposure, etc., have been 

found to raise the risk of AD. It is hypothesized that these environmental risk factors may initiate the 

pathogenesis of AD by interacting with an individual's risk genes, but there is no proof that they are the only 

cause of AD. Research has assessed how APOE genes interact with their surroundings. For instance, people 

who have poor physical activity and the APOE ε4 allele are much more likely to acquire dementia than those 

who have only one of these factors [91]. The relationship between genetic variants and environmental risk 

factors, however, has received very little study attention [92].  

The contribution of mitochondrial genetic diversity to AD risk is equivocal because of the limited sample size 

and lack of confirmation, despite reports suggesting certain mitochondrial haplogroups and single nucleotide 

polymorphisms influence the risk of AD [95, 96]. 

 
Method Focus/Approach Key Findings Significance in AD References 

Genetic Linkage 

Analysis 

Pedigree-based mapping 

using genetic markers 

Identified mutations in APP, 

PSEN1, PSEN2 linked to 

EOAD; extra copy of 

chromosome 21 in Down’s 

syndrome causes AD-like 

pathology 

Established the first 

causal genes in AD 

[57], [63–

65] 

Candidate 

Gene/Pathway 

Studies 

Focused on pre-selected 

genes/pathways 

APOE ε4 allele identified as 

strongest genetic risk factor for 

LOAD 

Still useful in rare 

allele studies, 

especially in specific 

populations 

[66,67] 

Genome-Wide 

Association 

Studies (GWAS) 

Screening thousands of 

SNPs across large cohorts 

Identified risk genes including 

APOE, BIN1, PICALM, 

SORL1, CLU 

Expanded 

knowledge of 

polygenic risk 

factors 

[68–70] 

Next-Generation 

Sequencing 

(NGS) 

High-throughput DNA 

sequencing 

Revealed rare and low-

frequency variants influencing 

AD risk 

Enables discovery 

beyond common 

SNPs 

[62] 

Genetic Risk 

Scores (GRS) 

Combining multiple SNPs 

into predictive score 

Prediction accuracy up to 82% 

(study with 1,554 controls & 

3,049 AD patients) 

Useful for risk 

stratification and 

precision medicine 

[83] 

Epistasis (Gene–

Gene 

Interactions) 

Interaction studies 

(Bayesian networks, 

combinatorial epistasis 

learning) 

Discovered novel SNP–SNP 

interactions (e.g., KHDRBS2–

CRYL1) 

Reveals hidden 

complexity beyond 

single-gene studies 

[84,85] 

Functional 

Genomics / 

Pathway 

Analysis 

Integrating 

transcriptomics, 

proteomics, metabolomics 

with genetics 

Enriched pathways: APP 

metabolism, tau binding, 

inflammation, lipid 

metabolism, synaptic function 

Bridges genotype–

phenotype gap 

[11,62,70,71

,86] 
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Gene–

Environment 

Interaction 

Studies 

Examining 

lifestyle/environment with 

genetic risk 

APOE ε4 + low physical 

activity strongly ↑ dementia 

risk 

Supports 

multifactorial model 

of AD 

[88–92] 

Epigenetic 

Studies 

DNA methylation, histone 

modifications, ncRNAs 

Altered methylation (e.g., 

APOE CpG, HOXA cluster), 

abnormal HDAC activity, 

deregulated miRNAs/lncRNAs 

Shows regulatory 

changes beyond 

DNA sequence 

[62,93,94] 

 

5. The Use of AI in Genetic Analysis of AD 

 

Large data analysis of high-dimensional complex systems has shown the effectiveness of AI technologies, 

particularly machine learning techniques. Currently, genetic variants, gene expression profiles, gene-gene 

interactions in AD, genetic analyses of AD based on a knowledge base, and genetic data-based diagnostic and 

prognosis studies have all made use of machine learning. 

 

5.1. The prognosis and diagnosis 

Previously, by examining patient genetic data, AI algorithms were utilized to predict the diagnosis and 

prognosis of AD. Two studies of centenarians and other AD and Parkinson's disease patients in Japan were 

published by Takasaki et al. in 2008 and 2009.  

In the first study, they analyzed mitochondrial single nucleotide polymorphisms (mtSNPs) at certain places in 

mitochondrial DNA using a radial basis function (RBF) network. They discovered that various subject types 

had distinct mtSNPs. The G2a haplogroup is strongly associated to AD patients from Japan. The second study 

demonstrated that Japanese AD patients were linked to the B4c1 and N9b1 haplogroups in addition to the G2a 

haplotype. According to the authors, this analytic approach may be used for the first diagnosis in order to 

forecast the likelihood that an individual would acquire AD or a number of other disorders [83,84]. With 312 

to 318 SNPs in 1,411 patients, Wei et al. (2011) created a model-averaged naïve Bayes (MANB) model that 

outperforms earlier models in predicting LOAD patients. The receiver operating characteristic curve's (AUC) 

area under the curve was 0.72. Furthermore, using high-dimensional genomic data for training and testing 

improves the model's performance. The findings provide evidence that AD may be predicted from genome-

wide data using MANB [85].  

A support vector machine (SVM) technique was developed by Xu et al. in a recent research to examine gene-

encoded protein sequences rather than patient genotype data. The algorithm's prediction accuracy was 85.7% 

when evaluated using 1,463 non-AD-related data and 279 AD-related protein sequence data from the UniProt 

database. This study's flaw, however, is that it fails to differentiate between early-onset familial AD and other 

forms of AD based on protein sequence information [86]. In order to create a gene coexpression network and 

find potential AD diagnostic biomarkers, Wang et al. also used the SVM classifier to examine the microarray 

gene expression dataset from the NCBI GEO database (www.ncbi.nlm.nih.gov/geo). A group of 44 genes were 

shown to be possible biomarkers [87].  

In order to identify patients with mild cognitive impairment (MCI) who will develop AD within three years, 

Varatharajah et al. developed a multivariate model based on machine learning algorithms (SVM, multiple 

kernel learning). This model integrates demographics, biomarkers of cerebrospinal fluid (CSF), magnetic 

resonance imaging (MRI), positron emission tomography (PET), a psychological test score for cognition and 

cognitive resilience, and the top AD-related genes that have been validated (including 94 potential predictive 

factors). They achieved an astounding 93% prediction accuracy rate by examining 135 ADNI subjects [88]. 

According to the aforementioned study, there is some benefit in using machine learning techniques to analyze 

genetic data in order to predict the prognosis and risk stratification of AD; however, its accuracy will be 

significantly increased if imaging data is also included.  

 

5.2. Examination of genetic differences in AD 

As brain imaging technology has advanced, it has been shown that certain structural and functional changes in 

the brain may take place years before AD is diagnosed [89]. Neuroimaging genetics is the field of study that 

examines the relationship between genetic differences and changes in brain imaging. One of the most 

significant resources for sharing AD brain imaging data is the ADNI project, which has been tracking and 

gathering clinical, imaging, genetic, and biochemical biomarker data for AD patients since 2004. The project 

is funded by the US National Institutes of Health and pharmaceutical companies.  
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The multivariate relationships between many SNPs and neuroimaging features may be found using sparse 

canonical correlation analysis (SCCA). In order to examine the relationships between genetic markers found 

in the APOE gene and MRI and amyloid imaging data obtained from the ADNI database, Du et al. developed 

two structural SCCA models. They discovered a substantial correlation between amyloid load in the frontal 

area and damage to the right hippocampal region and the APOE ε4 allele rs429358 [90,91]. Hou et colleagues. 

discovered many risk genetic variations of AD linked to the APOE, BCR, NPC2, and RFTN1 genes by 

performing regression analysis on SNP and MRI datasets of ADNI using a multitask learning model [92].  

The pathophysiology of AD may include particular genes that are tissue-specific. The network wide association 

study (NetWAS) approach may prioritize GWAS analysis by using machine learning techniques to tissue-

specific functional interaction networks. The protocadherin alpha gene cluster (PCDHA) may be a suspect 

gene, according to Song et al.'s analysis of the ADNI GWAS dataset using the hippocampus volume as the 

phenotype [93]. Without taking into account the dynamics of phenotypic changes, the aforementioned research 

examined the relationship between genetic variants and static neuroimaging phenotypes at a particular time 

point. The dynamic neurodegenerative process may be explained by these shifting phenotypes, according to 

Hao et al.'s hypothesis. They developed a "temporally constrained group sparse canonical correlation analysis 

framework" that was trained using time series data from the ADNI database. The impact of the risk locus 

rs429358 on the decline of AD was questioned by the longitudinal method, but they also concentrated on SNPs 

close to the APOE gene and discovered that this model could detect stronger associations than previous SCCA 

models, confirming that the loci rs76692773 and rs2075649 were top ranking [94].  

 

5.3. Examination of the AD Gene Expression Profile  

Gene expression patterns in brain cells may be changed by genetic variants alone or in conjunction with 

environmental influences. This can result in anomalies in the metabolism of certain proteins and eventually 

cause pathogenic alterations in AD. In order to identify important genes and pathways linked to the 

pathophysiology of AD, which may be targets for therapeutic intervention, it is useful to investigate variations 

in gene expression levels in brain cells. RNA-sequencing (RNA-Seq) based on next-generation sequencing 

technology and high-throughput microarray may provide a thorough snapshot of the transcriptome of cell or 

tissue samples. They are unable to learn much about the biological mechanisms of a particular illness because 

of the great dimensionality and complexity of the data. In order to successfully expose complicated biological 

traits, several research have switched from conventional statistical approaches to machine learning methods 

for data analysis.  

More complex methods have been utilized in recent studies, and many of these experts think that in order to 

identify any more genes involved in AD, unusual and complex algorithms should be used. Martinez-Ballesteros 

et al. trained on many meticulously constructed gene expression datasets by combining decision tree classifiers, 

quantitative rules, and hierarchical clustering techniques. To corroborate their findings, they did, however, also 

take into account other sources, such as a gene ontology, a library of previously relevant AD genes, a literature 

study, or expert knowledge. They discovered that 90 genes had substantially altered expression in AD patients 

compared to controls [95].  

 

5.4. gene-gene interactions 

Gene-gene interactions have important roles in the pathophysiology of AD, as was previously established. 

Studies of metabolic pathways, transcript interaction networks, and SNP epistatic interactions have all made 

use of machine learning methods. Jiang and colleagues (2011) developed a Bayesian network-based 

combinatorial epistasis learning technique. This strategy is possible, according to their evaluation of its 

performance with various settings on simulated datasets and a genuine Alzheimer's GWAS dataset [96]. Jiang 

et al. later enhanced the technique by combining information gain and Bayesian network techniques. A GWAS 

LOAD dataset of 552 control cases and 859 AD was examined by them. The findings showed additional 

interactions, such as APOE / GAB2 interactions involving more loci, in addition to being in line with earlier 

data [97]. Using the same GWAS LOAD dataset as Jiang et al., Han et al. also used a Bayesian network-based 

technique to identify epistatic interactions. Their discovery of two SNPs (rs1931565 and rs4505578) may raise 

the risk of LOAD due to their interactions with APOE [98].  

Iterative sure independence screening (SIS), another machine learning approach, is capable of analyzing 

extremely big datasets with more predictors than observations. Hibar et al. conducted an interaction study, 

screening 534,033 SNPs in a GWAS dataset from ADNI for any potential SNP-SNP interactions that impacted 

regional brain sizes. 1.9% of the variations in the temporal lobe volume might be explained by a substantial 

SNP-SNP interaction they discovered between rs1345203 (likely linked to histone acetylation) and rs1213205 

(likely related to DNase I cleavage) [99].  
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Numerous research have also examined transcript interaction networks utilizing machine learning techniques. 

In a previous research, Armananzas et al. constructed transcript interaction networks using ensemble Bayesian 

network classifiers based on transcript profiling from samples of the dentate gyrus and entorhinal cortex in six 

AD and six control patients in 2012. According to research, a few critical transcripts in the network, including 

S100A10, RPS3A, and MED8, may be crucial for the pathophysiology of AD [100].  

 

5.5. Using a Knowledge Base for Genetic Analysis 

The majority of research that used machine learning to understand the pathophysiology of AD examined 

genetic or other medical data (such brain imaging) from different original AD datasets. Few research, 

nonetheless, are searching for other approaches to support its growth. These investigations used an existing 

biological knowledge base using AI technology to find genes linked to AD risk.  

Jamal et al. used eleven machine learning algorithms to examine many open-source knowledge sets in an 

attempt to identify genes that are prone to AD. The sequence features (UniProt database), functional 

annotations (DAVID and two additional Swiss-Prot functional annotation terms), and protein-protein 

interaction networks (OPID, STRING, MINT, BIND, and InTAct databases) were used to extract the integrated 

topological properties of the AD-related genes. Additionally, they screened interactions between newly 

discovered AD-related proteins and recognized AD medications using molecular docking techniques [101]. 

Furthermore, Huang et al. integrated the data from a brain-specific gene network from GIANT and an AD gene 

knowledge base (AlzGene) using an SVM algorithm. They then examined over 20,000 genes in a catalog of 

human genes and genetic diseases (OMIM). The 832 candidate genes produced in this analysis may serve as a 

thorough reference for AD gene research [102]. The task of searching the literature may be aided by text mining 

techniques. A machine learning technique that may automatically extract disease-gene-variation information 

from biomedical literature was suggested by Singhal et al. From every PubMed abstract, they retrieved the 

aforementioned data for 10 significant illnesses, including AD. The author concluded that the strategy had 

practical utility after comparing it to the UniProt knowledge base [104]. 

 
Dataset / Input AI / ML Method Key Findings References 

Mitochondrial SNPs in Japanese AD, PD, 

centenarians 

Radial Basis Function (RBF) 

Network 

Identified haplogroups G2a, B4c1, N9b1 

associated with AD in Japanese patients 

[99,100] 

312–318 SNPs in 1,411 patients Model-Averaged Naïve Bayes 

(MANB) 

Achieved AUC 0.72, outperforming 

earlier models 

[101] 

Protein sequence data (279 AD-related vs 

1,463 non-AD) 

Support Vector Machine (SVM) 85.7% accuracy in distinguishing AD-

related proteins 

[102] 

Microarray gene expression (NCBI GEO) SVM Classifier Identified 44 potential gene biomarkers 

for AD 

[103] 

Multimodal data (CSF biomarkers, MRI, 

PET, genetics, cognition) in 135 ADNI 

subjects 

SVM + Multiple Kernel 

Learning 

Predicted MCI-to-AD conversion with 

93% accuracy 

[104] 

AD case-control dataset (380,157 SNPs) Decision Tree + Random Forest Stratified SNPs into relevant subgroups [103] 

AD & PD GWAS datasets Improved Random Forest (2-

stage sampling) 

Outperformed conventional SNP 

selection methods 

[104] 

ADNI neuroimaging + GWAS data Sparse Multimodal 

Multitasking Learning 

Identified APOE, BIN1, PICALM, 

SORL1, IL1B as biomarkers 

[99] 

ADNI MRI + amyloid imaging + SNPs Sparse Canonical Correlation 

Analysis (SCCA) 

Linked APOE ε4 (rs429358) with 

amyloid load & hippocampal atrophy 

[100] 

ADNI SNP + MRI dataset Multitask Learning Regression Found risk variants in APOE, BCR, 

NPC2, RFTN1 

[101] 

ADNI GWAS + hippocampal volume 

phenotype 

NetWAS (network-wide 

association study) 

Identified PCDHA gene cluster as AD-

related 

[102] 

ADNI longitudinal SNP + imaging data Temporally Constrained Group 

SCCA 

Confirmed APOE locus; identified 

rs76692773, rs2075649 

[103] 

WGS + imaging (6M SNPs, 

hippocampal/entorhinal volumes) 

Lasso Regression, Structured 

Sparse Regression 

Identified novel genes: VAT1L, 

CACNA1C, FGF14, BACE2, etc. 

[104] 

 

Future Scope 

 

Research on Alzheimer's disease (AD) might revolutionize diagnostic, prognosis, and treatment approaches by 

using artificial intelligence (AI). A more comprehensive knowledge of AD pathogenesis will be possible in the 

future because to AI-driven multimodal data integration that combines genomes, neuroimaging, proteomics, 

metabolomics, and electronic health records. New biomarkers for early and even pre-symptomatic 

identification may be found as a result of this integration, allowing for prompt intervention. Furthermore, in 
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order to convert computational results into clinically useful insights and improve patient care and physician 

trust, explainable AI models will be essential.  

When combined with AI-based analytics, wearable technology and Internet of Things (IoT) devices may 

provide ongoing, real-time monitoring of behavioral and cognitive changes in those at risk for AD. Novel 

treatments will be found more quickly thanks to AI-guided drug discovery and repurposing, and adaptive 

algorithms may improve patient classification, recruitment, and clinical trial design. AI-powered personalized 

medicine techniques might aid in creating individualized treatment plans based on a patient's genetic and 

lifestyle characteristics.  

Addressing the issues of data heterogeneity, interpretability, and ethical concerns will need cooperation 

between computer scientists, neuroscientists, and physicians. All things considered, AI is expected to be crucial 

in advancing AD research from descriptive to predictive, preventative, and precision medical treatments. 

 

Conclusion  

 

Alzheimer’s disease remains one of the most pressing medical challenges of the 21st century, with its complex 

interplay of genetic, environmental, and epigenetic factors making prevention and treatment extremely 

difficult. Conventional research methods, while valuable, are often limited in their ability to process and 

interpret the vast volumes of multidimensional data generated by modern biomedical technologies. Artificial 

intelligence (AI) offers a transformative solution by enabling high-throughput analysis, pattern recognition, 

and predictive modeling across genetic, transcriptomic, imaging, and clinical datasets. 

AI applications in AD have already demonstrated remarkable potential in identifying genetic variants, 

uncovering gene-gene and gene-environment interactions, linking neuroimaging signatures to disease 

progression, and predicting risk with improved accuracy. Moreover, AI-driven approaches are accelerating 

drug discovery, repurposing, and clinical trial optimization, thereby addressing critical bottlenecks in 

therapeutic development. While challenges such as data heterogeneity, lack of standardization, interpretability, 

and ethical considerations remain, ongoing advancements in explainable AI and collaborative research are 

steadily overcoming these barriers. 

In summary, AI is poised to revolutionize the landscape of Alzheimer’s disease research and clinical care. By 

enabling precision medicine, facilitating early detection, and guiding personalized therapeutic strategies, AI 

not only enhances our understanding of AD pathogenesis but also holds the promise of reshaping its 

management and improving patient outcomes in the years to come. 
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