To assess the impact of Cypermethrin (10 EC) on Natural fish food (zooplankton)

Authors

  • Brijesh Chahar
  • Tejpal Dahiya

DOI:

https://doi.org/10.53555/jaz.v43iS1.5221

Keywords:

Cypermethrin, Zooplankton, Toxicity, pyrethroid insecticide, survivability

Abstract

Agricultural pyrethroid insecticide, particularly cypermethrin, is frequently used in commercial carp aquaculture ponds to control aquatic bugs. These pyrethroids are extremely toxic to a broad spectrum of aquatic creatures. The aim of this study was to investigate the effect of pyrethroid insecticide cypermethrin (10 EC) on the survivability rate of Natural fish food (zooplankton). The eight different concentrations of cypermethrin (10 EC) were used 0.4, 14, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4 µl/l to investigate the cypermethrin toxicity. The stock solution was prepared by dissolving suitable amount of cypermethrin in one litre of diluent water. The test concentrations of dilute solution of cypermethrin were expressed in microliter per litre (µl/l). At a concentration of 1.4 µl/l of cypermethrin, the survivability rate was 82 % at the end of the 8th hour and 78% at the end of the 10th hour. At the concentrations of 6.4 µl/l and 7.4 µl/l, 60% and 50% survivability of zooplankton was reported by the end of 8th and 10th hour, respectively. The LC50 values were recorded between 2.43 and 23.98 for different time durations.

Downloads

Download data is not yet available.

Author Biographies

Brijesh Chahar

Department of Zoology, CCS Haryana Agricultural University, Hisar- 125004, Haryana, India

Tejpal Dahiya

Department of Zoology, CCS Haryana Agricultural University, Hisar- 125004, Haryana, India

References

1. Casida, J. E. (1980). Pyrethrum flowers and pyrethroid insecticides. Environmental health perspectives, 34, 189-202.

2. Christensen, B. T., Lauridsen, T. L., Ravn, H. W., & Bayley, M. (2005). A comparison of feeding efficiency and swimming ability of Daphnia magna exposed to cypermethrin. Aquatic Toxicology, 73(2), 210-220.

3. Clark, J. R., Goodman, L. R., Borthwick, P. W., Patrick Jr, J. M., Cripe, G. M., Moody, P. M., & Lores, E. M. (1989). Toxicity of pyrethroids to marine invertebrates and fish: A literature review and test results with sediment‐sorbed chemicals. Environmental Toxicology and Chemistry: An International Journal, 8(5), 393-401.

4. Day, K. E. (1989). Acute, chronic and sublethal effects of synthetic pyrethroids on freshwater zooplankton. Environmental Toxicology and Chemistry: An International Journal, 8(5), 411-416.

5. Day, K. E., Kaushik, N. K., & Solomon, K. R. (1987). Impact of fenvalerate on enclosed freshwater planktonic communities and on in situ rates of filtration of zooplankton. Canadian Journal of fisheries and aquatic sciences, 44(10), 1714-1728.

6. Day, K., & Kaushik, N. K. (1987). Short-term exposure of zooplankton to the synthetic pyrethroid, fenvalerate, and its effects on rates of filtration and assimilation of the alga, Chlamydomonas reinhardii. Archives of Environmental Contamination and Toxicology, 16(4), 423-432.

7. Edmondson, W. T. (1974). Secondary production: With 2 figures and 2 tables in the text. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen, 20(1), 229-272.

8. Elliott, M., & Janes, N. F. (1978). Synthetic pyrethroids–a new class of insecticide. Chemical Society Reviews, 7(4), 473-505.

9. Elliott, M., Farnham, A. W., Janes, N. F., Needham, P. H., & Pulman, D. A. (1974). Synthetic insecticide with a new order of activity. Nature, 248(5450), 710-711.

10. Environmental Protection Agency. Office of Children's Health Protection. (2001). EPA (No. 1). United States Environmental Protection Agency. 100 pp.

11. Etchegoyen, M. A., Ronco, A. E., Almada, P., Abelando, M., & Marino, D. J. (2017). Occurrence and fate of pesticides in the Argentine stretch of the Paraguay-Paraná basin. Environmental Monitoring and Assessment, 189(2), 1-12.

12. Finney, D. J. (1971). Probit analysis, Cambridge Univ. press, London 3rd. Ed 333pp.

13. Fochtman, P., Raszka, A., & Nierzedska, E. (2000). The use of conventional bioassays, microbiotests, and some “rapid” methods in the selection of an optimal test battery for the assessment of pesticides toxicity. Environmental Toxicology: An International Journal, 15(5), 376-384.

14. Gottardi, M., Birch, M. R., Dalhoff, K., & Cedergreen, N. (2017). The effects of epoxiconazole and α‐cypermethrin on Daphnia magna growth, reproduction, and offspring size. Environmental Toxicology and Chemistry, 36(8), 2155-2166.

15. Hanazato, T. (2001). Pesticide effects on freshwater zooplankton: an ecological perspective. Environmental pollution, 112(1), 1-10.

16. Hart, W. B., P. Doudoroff and J. Greenbank, (1945). The evaluation of the toxicity of industrial wastes, chemicals and other substances to fresh-water fishes. Waste Control Laboratory of the Atlantic Refining Company, pp: 317.

17. Hill, I. R. (1989). Aquatic organisms and pyrethroids. Pesticide Science, 27(4), 429-457.

18. Jimenez, D. F., Revie, C. W., Hardy, S. P., Jansen, P. A., & Gettinby, G. (2013). Multivariate evaluation of the effectiveness of treatment efficacy of cypermethrin against sea lice (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar). BMC veterinary research, 93(3), 1-9.

19. Jones, D. (1995). Environmental fate of cypermethrin. Environmental Monitoring and Pest Management, 249, 390-397.

20. Kajak, Z. (1998). Hydrobiologia-limnologia: ekosystemy wód śródlądowych. Wydawnictwo Naukowe PWN. Pp. 1-355.

21. Kaneko, H., Ohkawa, H., & Miyamoto, J. (1978). Degradation and movement of permethrin isomers in soil. Journal of Pesticide Science (Japan), 3(1), 43-51.

22. Kayhan, F. E., Kaymak, G., & Yön, N. D. (2013). Insecticide groups and their effects in aquatic environment. Marmara Fen Bilimleri Dergisi, 25(4), 167-183.

23. Khanjani, M. H., Sharifinia, M., & Hajirezaee, S. (2023). Biofloc: a sustainable alternative for improving the production of farmed cyprinid species. Aquaculture Reports, 33(3), 101748.

24. Kidd, H. & James, D. R., (1991), Eds. The Agrochemicals Handbook, Third Edition. Royal Society of Chemistry Information Services, Cambridge, UK, 8-7

25. Kranthi, K. R., Jadhav, D. R., Kranthi, S., Wanjari, R. R., Ali, S. S., & Russell, D. A. (2002). Insecticide resistance in five major insect pests of cotton in India. Crop Protection, 21(6), 449-460.

26. Kumar, P., Kumar, R., Thakur, K., Mahajan, D., Brar, B., Sharma, D., & Sharma, A. K. (2023). Impact of pesticides application on aquatic ecosystem and biodiversity: A review. Biology Bulletin, 50(6), 1362-1375.

27. LaForge, F.B. & Markwood, L.N. (1938) Organic Insecticides. Annual Review of Biochemistry, 7(11), 473-490.

28. Lutnicka, H., Fochtman, P., Bojarski, B., Ludwikowska, A., & Formicki, G. (2014). The influence of low concentration of cypermethrin and deltamethrin on phyto-and zooplankton of surface waters. Folia Biologica (Kraków), 62(3), 251-257.

29. Martins, J., Teles, L. O., & Vasconcelos, V. (2007). Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environment International, 33(3), 414-425.

30. Medina, M., Barata, C., Telfer, T., & Baird, D. J. (2004). Effects of cypermethrin on marine plankton communities: a simulated field study using mesocosms. Ecotoxicology and Environmental Safety, 58(2), 236-245.

31. Milam, C. D., Farris, J. L., & Wilhide, J. D. (2000). Evaluating mosquito control pesticides for effect on target and non-target organisms. Archives of Environmental Contamination and Toxicology, 39(7), 324-328.

32. Mugni, H., Paracampo, A., Marrochi, N., & Bonetto, C. (2013). Acute toxicity of cypermethrin to the non-target organism Hyalella curvispina. Environmental toxicology and pharmacology, 35(1), 88-92.

33. Narahashi, T. (2000). Neuroreceptors and ion channels as the basis for drug action: past, present, and future. Journal of Pharmacology and Experimental Therapeutics, 294(1), 1-26.

34. Needham, J. G., & Needham, P. R. (1962). A guide to the study of fresh-water biology. 5th edition. Holden day Inc. San Francisco, 7(6), 1- 180.

35. Nikinmaa, M. (2014). An introduction to aquatic toxicology. Elsevier. ISBN: 9780124115743, 1-287 pp.

36. Organisation for Economic Co-operation and Development (OECD). 1998. Daphnia magna reproduction test. (In: Guidelines for Testing of Chemicals. Protocol No 211, Paris, France): 1-20.

37. Patel, S., Bajpai, J., Saini, R., Bajpai, A. K., & Acharya, S. (2018). Sustained release of pesticide (Cypermethrin) from nanocarriers: an effective technique for environmental and crop protection. Process safety and environmental protection, 117(4), 315-325.

38. Persoone, G., Van de Vel, A., Van Steertegem, M., & De Nayer, B. (1989). Predictive value of laboratory tests with aquatic invertebrates: influence of experimental conditions. Aquatic toxicology, 14(2), 149-167.

39. Raj, J., Dogra, T. D., Gupta, Y. K., Bhatt, K. V., & Raina, A. (2014). Cypermethrin Poisoning and its Toxic Effects: An Overview. Indian Journal of Health Sciences and Care, 1(1), 30-38.

40. Reish, D. J., Oshida, P. S., Mearns, A. J., & Ginn, T. C. (1987). Effects on saltwater organisms. Journal (Water Pollution Control Federation), 59(6), 572-586.

41. Salgado, V. L., Irving, S. N., & Miller, T. A. (1983). The importance of nerve terminal depolarization in pyrethroid poisoning of insects. Pesticide Biochemistry and Physiology, 20(2), 169-182.

42. Sinha, V., & Shrivastava, S. (2024). Cypermethrin: An Emerging Pollutant and Its Adverse Effect on Fish Health and some Preventive Approach-A Review. Indian Journal of Microbiology, 64(1), 48-58.

43. Snedecor, G. W., & Cochram, W. G. (1980). Comparisons of two samples In: Snedecor and cochran (ed) statistical methods, 1-6 pp.

44. Soderlund, D. M., Clark, J. M., Sheets, L. P., Mullin, L. S., Piccirillo, V. J., Sargent, D., & Weiner, M. L. (2002). Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, 171(1), 3-59.

45. Vijverberg, H. P., & Vanden Bercken, J. (1990). Neurotoxicological effects and the mode of action of pyrethroid insecticides. Critical reviews in toxicology, 21(2), 105-126.

46. Vryzas, Z., Alexoudis, C., Vassiliou, G., Galanis, K., & Papadopoulou-Mourkidou, E. (2011). Determination and aquatic risk assessment of pesticide residues in riparian drainage canals in northeastern Greece. Ecotoxicology and Environmental Safety, 74(2), 174-181.

47. Werner, I., Geist, J., Okihiro, M., Rosenkranz, P., & Hinton, D. E. (2002). Effects of dietary exposure to the pyrethroid pesticide esfenvalerate on medaka (Oryzias latipes). Marine environmental research, 54(3-5), 609-614.

48. World Health Organization (1989). Cypermethrin. World Health Organization. ISBN: 92415434442 (pp, 1-15)

Downloads

Published

2022-12-16

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.